/usr/include/shark/LinAlg/Cholesky.h is in libshark-dev 3.1.4+ds1-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 | /*!
*
*
* \brief Cholesky Decompositions for a Matrix A = LL^T
*
*
*
*
* \author O. Krause
* \date 2012
*
*
* \par Copyright 1995-2015 Shark Development Team
*
* <BR><HR>
* This file is part of Shark.
* <http://image.diku.dk/shark/>
*
* Shark is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Shark is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Shark. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef SHARK_LINALG_CHOLESKY_H
#define SHARK_LINALG_CHOLESKY_H
#include <shark/LinAlg/Base.h>
#include <shark/LinAlg/BLAS/kernels/potrf.hpp>
namespace shark{ namespace blas{
/**
* \ingroup shark_globals
*
* @{
*/
/*!
* \brief Lower triangular Cholesky decomposition.
*
* Given an \f$ m \times m \f$ symmetric positive definite matrix
* \f$A\f$, compute the lower triangular matrix \f$L\f$ such that
* \f$A = LL^T \f$.
* An exception is thrown if the matrix is not positive definite.
* If you suspect the matrix to be positive semi-definite, use
* pivotingCholeskyDecomposition instead
*
* \param A \f$ m \times m \f$ matrix, which must be symmetric and positive definite
* \param L \f$ m \times m \f$ matrix, which stores the Cholesky factor
* \return none
*
*
*/
template<class MatrixT,class MatrixL>
void choleskyDecomposition(
matrix_expression<MatrixT> const& A,
matrix_expression<MatrixL>& L
){
SIZE_CHECK(A().size1() == A().size2());
size_t m = A().size1();
ensure_size(L,m, m);
L().clear();
for(std::size_t i = 0; i != m; ++i){
for(std::size_t j = 0; j <= i; ++j){
L()(i,j) = A()(i,j);
}
}
if(kernels::potrf<lower>(L()) != 0){
throw SHARKEXCEPTION("[Cholesky Decomposition] The Matrix is not positive definite");
}
}
/// \brief Updates a covariance factor by a rank one update
///
/// Let \f$ A=LL^T \f$ be a matrix with its lower cholesky factor. Assume we want to update
/// A using a simple rank-one update \f$ A = \alpha A+ \beta vv^T \f$. This invalidates L and
/// it needs to be recomputed which is O(n^3). instead we can update the factorisation
/// directly by performing a similar, albeit more complex algorithm on L, which can be done
/// in O(L^2).
///
/// Alpha is not required to be positive, but if it is not negative, one has to be carefull
/// that the update would keep A positive definite. Otherwise the decomposition does not
/// exist anymore and an exception is thrown.
///
/// \param L the lower cholesky factor to be updated
/// \param v the update vector
/// \param alpha the scaling factor, must be positive.
/// \param beta the update factor. it Can be positive or negative
template<class Matrix,class Vector>
void choleskyUpdate(
matrix_expression<Matrix>& L,
vector_expression<Vector> const& v,
double alpha, double beta
){
//implementation blatantly stolen from Eigen
std::size_t n = v().size();
blas::vector<double> temp = v();
double betaPrime = 1;
double a = std::sqrt(alpha);
for(std::size_t j=0; j != n; ++j)
{
double Ljj = a*L()(j,j);
double dj = Ljj*Ljj;
double wj = temp(j);
double swj2 = beta*wj*wj;
double gamma = dj*betaPrime + swj2;
double x = dj + swj2/betaPrime;
if (x <= 0.0)
throw SHARKEXCEPTION("[choleskyUpdate] update makes matrix indefinite, no update available");
double nLjj = std::sqrt(x);
L()(j,j) = nLjj;
betaPrime += swj2/dj;
// Update the terms of L
if(j+1 <n)
{
subrange(column(L,j),j+1,n) *= a;
noalias(subrange(temp,j+1,n)) -= (wj/Ljj) * subrange(column(L,j),j+1,n);
if(gamma == 0)
continue;
subrange(column(L,j),j+1,n) *= nLjj/Ljj;
noalias(subrange(column(L,j),j+1,n))+= (nLjj * beta*wj/gamma)*subrange(temp,j+1,n);
}
}
}
/*!
* \brief Lower triangular Cholesky decomposition with full pivoting performed in place.
*
* Given an \f$ m \times m \f$ symmetric positive semi-definite matrix
* \f$A\f$, compute the lower triangular matrix \f$L\f$ and permutation Matrix P such that
* \f$P^TAP = LL^T \f$. If matrix A has rank(A) = k, the first k columns of A hold the full
* decomposition, while the rest of the matrix is zero.
* This method is slower than the cholesky decomposition without pivoting but numerically more
* stable. The diagonal elements are ordered such that i > j => L(i,i) >= L(j,j)
*
* The implementation used here is described in the working paper
* "LAPACK-Style Codes for Level 2 and 3 Pivoted Cholesky Factorizations"
* http://www.netlib.org/lapack/lawnspdf/lawn161.pdf
*
* The computation is carried out in place this means A is destroied and replaced by L.
*
*
* \param Lref \f$ m \times m \f$ matrix, which must be symmetric and positive definite. It is replaced by L in the end.
* \param P The pivoting matrix
* \return The rank of the matrix A
*/
template<class MatrixL>
std::size_t pivotingCholeskyDecompositionInPlace(
shark::blas::matrix_expression<MatrixL>& Lref,
PermutationMatrix& P
);
/*!
* \brief Lower triangular Cholesky decomposition with full pivoting
*
* Given an \f$ m \times m \f$ symmetric positive semi-definite matrix
* \f$A\f$, compute the lower triangular matrix \f$L\f$ and permutation Matrix P such that
* \f$P^TAP = LL^T \f$. If matrix A has rank(A) = k, the first k columns of A hold the full
* decomposition, while the rest of the matrix is zero.
* This method is slower than the cholesky decomposition without pivoting but numerically more
* stable. The diagonal elements are ordered such that i > j => L(i,i) >= L(j,j)
*
* The implementation used here is described in the working paper
* "LAPACK-Style Codes for Level 2 and 3 Pivoted Cholesky Factorizations"
* http://www.netlib.org/lapack/lawnspdf/lawn161.pdf
*
*
* \param A \f$ m \times m \f$ matrix, which must be symmetric and positive definite
* \param P The pivoting matrix
* \param L \f$ m \times m \f$ matrix, which stores the Cholesky factor
* \return The rank of the matrix A
*
*
*/
template<class MatrixA,class MatrixL>
std::size_t pivotingCholeskyDecomposition(
matrix_expression<MatrixA> const& A,
PermutationMatrix& P,
matrix_expression<MatrixL>& L
){
//ensure sizes are correct
SIZE_CHECK(A().size1() == A().size2());
size_t m = A().size1();
ensure_size(L,m,m);
noalias(L()) = A;
return pivotingCholeskyDecompositionInPlace(L,P);
}
/** @}*/
}}
//implementation of the template functions
#include "Impl/Cholesky.inl"
#endif
|