This file is indexed.

/usr/include/sdsl/wt_rlmn.hpp is in libsdsl-dev 2.0.3-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
/* sdsl - succinct data structures library
    Copyright (C) 2011-2013 Simon Gog

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program.  If not, see http://www.gnu.org/licenses/ .
*/
/*! \file wt_rlmn.hpp
    \brief wt_rlmn.hpp contains a class for a compressed wavelet tree.
	  Compression is achieved by exploiting runs in the input sequence.
    \author Simon Gog
*/
#ifndef INCLUDED_SDSL_WT_RLMN
#define INCLUDED_SDSL_WT_RLMN

#include "sdsl_concepts.hpp"
#include "int_vector.hpp"
#include "sd_vector.hpp"// for standard initialisation of template parameters
#include "util.hpp"
#include "wt_huff.hpp"
#include <algorithm> // for std::swap
#include <stdexcept>
#include <vector>
#include <utility> // for pair
#include <queue>
#include <iostream>

//! Namespace for the succinct data structure library.
namespace sdsl
{

template<class t_alphabet_cat>
struct wt_rlmn_trait {
    enum { width = 0 };
    typedef int_vector<> C_type;
    typedef int_vector<> C_bf_rank_type;

    static std::map<uint64_t,uint64_t> temp_C() {
        return std::map<uint64_t, uint64_t>();
    }

    static C_type init_C(std::map<uint64_t,uint64_t>& C, uint64_t size) {
        uint64_t max_symbol = (--C.end())->first;
        return C_type(max_symbol+1, 0, bits::hi(size)+1);
    }

    static C_bf_rank_type init_C_bf_rank(const C_type& C, uint64_t size) {
        return C_bf_rank_type(C.size(), 0, bits::hi(size)+1);
    }
};

template<>
struct wt_rlmn_trait<byte_alphabet_tag> {
    enum {width = 8};
    typedef int_vector<64> C_type;
    typedef int_vector<64> C_bf_rank_type;

    static int_vector<64> temp_C() {
        return int_vector<64>(256, 0);
    }

    static C_type init_C(C_type& C, uint64_t) {
        return C;
    }

    static C_bf_rank_type init_C_bf_rank(const C_type&, uint64_t) {
        return int_vector<64>(256,0);
    }
};

//! A Wavelet Tree class for byte sequences.
/*!
 *    \par Space complexity
 *         \f$ nH_0 + 2|\Sigma|\log n + 2n + o(n) \f$ bits, where \f$n\f$
 *          is the size of the vector the wavelet tree was build for.
 *
 *   @ingroup wt
 *
 *  \tparam t_bitvector Type of the bitvector which is used to represent bf and
 *                      bl which mark the head of each run in the original
 *                      sequence.
 *  \tparam t_rank      Type of the rank support for bitvectors bf and bl.
 *  \tparam t_select    Type of the select support for bitvectors bf and lb.
 *  \tparam t_wt        Type of the wavelet tree for the string consisting of
 *                      the heads of the runs of the original sequence.
 *  \par Reference:
 *     Veli Mäkinen, Gonzalo Navarro:
 *     Succinct Suffix Arrays Based on Run-Length Encoding.
 *     CPM 2005: 45-56
 */
template<class t_bitvector = sd_vector<>,
         class t_rank = typename t_bitvector::rank_1_type,
         class t_select = typename t_bitvector::select_1_type,
         class t_wt = wt_huff<> >
class wt_rlmn
{
    public:

        typedef t_wt                                  wt_type;
        typedef int_vector<>::size_type               size_type;
        typedef typename t_wt::value_type             value_type;
        typedef typename t_bitvector::difference_type difference_type;
        typedef random_access_const_iterator<wt_rlmn> const_iterator;
        typedef const_iterator                        iterator;
        typedef t_bitvector                           bit_vector_type;
        typedef t_rank                                rank_support_type;
        typedef t_select                              select_support_type;
        typedef wt_tag                                index_category;
        typedef typename t_wt::alphabet_category      alphabet_category;
        enum { lex_ordered=false };     // TODO: is should be possible
        enum { width = wt_rlmn_trait<alphabet_category>::width };
        typedef typename wt_rlmn_trait<alphabet_category>::C_type
        C_type;
        typedef typename wt_rlmn_trait<alphabet_category>::C_bf_rank_type
        C_bf_rank_type;
        // to support all lex_ordered
        // operations if t_wt::lex_ordered is
        // true

    private:

        size_type            m_size  = 0; // size of the original input sequence
        bit_vector_type      m_bl;        // bit vector for starts of runs in
        // the BWT (or last column), i.e. _b_ _l_ast
        bit_vector_type      m_bf;        // bit vector for starts of runs in
        // the first column of the sorted suffixes, i.e _b_ _f_irst
        wt_type              m_wt;        // wavelet tree for all levels
        // two equal chars
        rank_support_type    m_bl_rank;   // rank support for bit vector bl
        rank_support_type    m_bf_rank;   // rank support for bit vector bf
        select_support_type  m_bl_select; // select support for bit vector bl
        select_support_type  m_bf_select; // select support for bit vector bf
        C_type               m_C;         //
        C_bf_rank_type       m_C_bf_rank; // stores the number of 1s in m_bf for
        // the prefixes m_bf[0..m_C[0]],m_bf[0..m_C[1]],....,m_bf[0..m_C[255]];
        // named C_s in the original paper

        void copy(const wt_rlmn& wt) {
            m_size          = wt.m_size;
            m_bl            = wt.m_bl;
            m_bf            = wt.m_bf;
            m_wt            = wt.m_wt;
            m_bl_rank       = wt.m_bl_rank;
            m_bl_rank.set_vector(&m_bl);
            m_bf_rank       = wt.m_bf_rank;
            m_bf_rank.set_vector(&m_bf);
            m_bl_select     = wt.m_bl_select;
            m_bl_select.set_vector(&m_bl);
            m_bf_select     = wt.m_bf_select;
            m_bf_select.set_vector(&m_bf);
            m_C             = wt.m_C;
            m_C_bf_rank     = wt.m_C_bf_rank;
        }

    public:

        const size_type& sigma = m_wt.sigma;

        // Default constructor
        wt_rlmn() {};

        //! Construct the wavelet tree from a file_buffer
        /*! \param text_buf  A int_vector_buffer to the original text.
         *  \param size      The length of the prefix of the text, for which
         *                   the wavelet tree should be build.
         */
        wt_rlmn(int_vector_buffer<width>& text_buf, size_type size):m_size(size) {
            std::string temp_file = text_buf.filename() +
                                    + "_wt_rlmn_" + util::to_string(util::pid())
                                    + "_" + util::to_string(util::id());
            {
                if (0 == text_buf.size() or 0 == size)
                    return;
                int_vector_buffer<width> condensed_wt(temp_file, std::ios::out);
                // scope for bl and bf
                bit_vector bl = bit_vector(size, 0);

                auto C = wt_rlmn_trait<alphabet_category>::temp_C();
                value_type last_c = (value_type)0;
                for (size_type i=0; i < size; ++i) {
                    value_type c = text_buf[i];
                    if (last_c != c or i==0) {
                        bl[i] = 1;
                        condensed_wt.push_back(c);
                    }
                    ++C[c];
                    last_c = c;
                }
                condensed_wt.close();
                m_C = wt_rlmn_trait<alphabet_category>::init_C(C, size);

                for (size_type i=0, prefix_sum=0; i<m_C.size(); ++i) {
                    m_C[i] = prefix_sum;
                    prefix_sum += C[i];
                }

                C_type lf_map = m_C;
                bit_vector bf = bit_vector(size+1, 0);
                bf[size] = 1; // initialize last element
                for (size_type i=0; i < size; ++i) {
                    value_type c = text_buf[i];
                    if (bl[i]) {
                        bf[lf_map[c]] = 1;
                    }
                    ++lf_map[c];
                }
                {
                    int_vector_buffer<width> temp_bwt_buf(temp_file);
                    m_wt = wt_type(temp_bwt_buf, temp_bwt_buf.size());
                }
                sdsl::remove(temp_file);
                m_bl = bit_vector_type(std::move(bl));
                m_bf = bit_vector_type(std::move(bf));
            }

            util::init_support(m_bl_rank, &m_bl);
            util::init_support(m_bf_rank, &m_bf);
            util::init_support(m_bf_select, &m_bf);
            util::init_support(m_bl_select, &m_bl);

            m_C_bf_rank = wt_rlmn_trait<alphabet_category>::init_C_bf_rank(m_C, size);
            for (size_type i=0; i<m_C.size(); ++i) {
                m_C_bf_rank[i] = m_bf_rank(m_C[i]);
            }
        }

        //! Copy constructor
        wt_rlmn(const wt_rlmn& wt) {
            copy(wt);
        }

        //! Move constructor
        wt_rlmn(wt_rlmn&& wt) {
            *this = std::move(wt);
        }

        //! Assignment operator
        wt_rlmn& operator=(const wt_rlmn& wt) {
            if (this != &wt) {
                copy(wt);
            }
            return *this;
        }

        //! Assignment move operator
        wt_rlmn& operator=(wt_rlmn&& wt) {
            if (this != &wt) {
                m_size          = std::move(wt.m_size);
                m_bl            = std::move(wt.m_bl);
                m_bf            = std::move(wt.m_bf);
                m_wt            = std::move(wt.m_wt);
                m_bl_rank       = std::move(wt.m_bl_rank);
                m_bl_rank.set_vector(&m_bl);
                m_bf_rank       = std::move(wt.m_bf_rank);
                m_bf_rank.set_vector(&m_bf);
                m_bl_select     = std::move(wt.m_bl_select);
                m_bl_select.set_vector(&m_bl);
                m_bf_select     = std::move(wt.m_bf_select);
                m_bf_select.set_vector(&m_bf);
                m_C             = std::move(wt.m_C);
                m_C_bf_rank     = std::move(wt.m_C_bf_rank);
            }
            return *this;
        }

        //! Swap operator
        void swap(wt_rlmn& wt) {
            if (this != &wt) {
                std::swap(m_size, wt.m_size);
                m_bl.swap(wt.m_bl);
                m_bf.swap(wt.m_bf);
                m_wt.swap(wt.m_wt);

                m_bl_rank.swap(wt.m_bl_rank);
                m_bl_rank.set_vector(&m_bl);
                wt.m_bl_rank.set_vector(&(wt.m_bl));
                m_bf_rank.swap(wt.m_bf_rank);
                m_bf_rank.set_vector(&m_bf);
                wt.m_bf_rank.set_vector(&(wt.m_bf));

                m_bl_select.swap(wt.m_bl_select);
                m_bl_select.set_vector(&m_bl);
                wt.m_bl_select.set_vector(&(wt.m_bl));
                m_bf_select.swap(wt.m_bf_select);
                m_bf_select.set_vector(&m_bf);
                wt.m_bf_select.set_vector(&(wt.m_bf));

                m_C.swap(wt.m_C);
                m_C_bf_rank.swap(wt.m_C_bf_rank);
            }
        }

        //! Returns the size of the original vector.
        size_type size()const {
            return m_size;
        }

        //! Returns whether the wavelet tree contains no data.
        bool empty()const {
            return 0 == m_size;
        }

        //! Recovers the i-th symbol of the original vector.
        /*! \param i Index in the original vector. \f$i \in [0..size()-1]\f$.
         *  \return The i-th symbol of the original vector.
         *  \par Time complexity
         *        \f$ \Order{H_0} \f$ on average, where \f$ H_0 \f$ is the
         *        zero order entropy of the sequence
         */
        value_type operator[](size_type i)const {
            assert(i < size());
            return m_wt[m_bl_rank(i+1)-1];
        };

        //! Calculates how many symbols c are in the prefix [0..i-1].
        /*!
         *  \param i Exclusive right bound of the range (\f$i\in[0..size()]\f$).
         *  \param c Symbol c.
         *  \return Number of occurrences of symbol c in the prefix [0..i-1].
         *  \par Time complexity
         *        \f$ \Order{H_0} \f$ on average, where \f$ H_0 \f$ is the
         *        zero order entropy of the sequence
         */
        size_type rank(size_type i, value_type c)const {
            assert(i <= size());
            if (i == 0)
                return 0;
            size_type wt_ex_pos = m_bl_rank(i);
            size_type c_runs = m_wt.rank(wt_ex_pos, c);
            if (c_runs == 0)
                return 0;
            if (m_wt[wt_ex_pos-1] == c) {
                size_type c_run_begin = m_bl_select(wt_ex_pos);
                return m_bf_select(m_C_bf_rank[c]+c_runs)-m_C[c]+i-c_run_begin;
            } else {
                return m_bf_select(m_C_bf_rank[c] + c_runs + 1) - m_C[c];
            }
        };

        //! Calculates how many times symbol wt[i] occurs in the prefix [0..i-1].
        /*!
         *  \param i The index of the symbol.
         *  \return  Pair (rank(wt[i],i),wt[i])
         *    \par Time complexity
         *        \f$ \Order{H_0} \f$
         */
        std::pair<size_type, value_type>
        inverse_select(size_type i)const {
            assert(i < size());
            if (i == 0) {
                return std::make_pair(0, m_wt[0]);
            }
            size_type wt_ex_pos = m_bl_rank(i+1);
            auto rc = m_wt.inverse_select(wt_ex_pos-1);
            size_type c_runs = rc.first + 1;
            value_type c     = rc.second;
            if (c_runs == 0)
                return std::make_pair(0, c);
            if (m_wt[wt_ex_pos-1] == c) {
                size_type c_run_begin = m_bl_select(wt_ex_pos);
                return std::make_pair(m_bf_select(m_C_bf_rank[c]+c_runs)-m_C[c]+i-c_run_begin, c);
            } else {
                return std::make_pair(m_bf_select(m_C_bf_rank[c]+c_runs+1)-m_C[c], c);
            }
        }

        //! Calculates the ith occurrence of the symbol c in the supported vector.
        /*!
         *  \param i The ith occurrence. \f$i\in [1..rank(size(),c)]\f$.
         *  \param c The symbol c.
         *  \par Time complexity
         *       \f$ \Order{H_0} \f$ on average, where \f$ H_0 \f$ is the zero order
         *        entropy of the sequence
         */
        size_type select(size_type i, value_type c)const {
            assert(i > 0);
            assert(i <= rank(size(), c));
            size_type c_runs = m_bf_rank(m_C[c]+i) - m_C_bf_rank[c];
            size_type offset = m_C[c]+i-1-m_bf_select(c_runs + m_C_bf_rank[c]);
            return m_bl_select(m_wt.select(c_runs, c)+1) + offset;
        };

        //! Returns a const_iterator to the first element.
        const_iterator begin()const {
            return const_iterator(this, 0);
        }

        //! Returns a const_iterator to the element after the last element.
        const_iterator end()const {
            return const_iterator(this, size());
        }

        //! Serializes the data structure into the given ostream
        size_type serialize(std::ostream& out, structure_tree_node* v=nullptr,
                            std::string name="")const {
            structure_tree_node* child = structure_tree::add_child(
                                             v, name, util::class_name(*this));
            size_type written_bytes = 0;
            written_bytes += write_member(m_size, out, child, "size");
            written_bytes += m_bl.serialize(out, child, "bl");
            written_bytes += m_bf.serialize(out, child, "bf");
            written_bytes += m_wt.serialize(out, child, "wt");
            written_bytes += m_bl_rank.serialize(out, child, "bl_rank");
            written_bytes += m_bf_rank.serialize(out, child, "bf_rank");
            written_bytes += m_bl_select.serialize(out, child, "bl_select");
            written_bytes += m_bf_select.serialize(out, child, "bf_select");
            written_bytes += m_C.serialize(out, child, "C");
            written_bytes += m_C_bf_rank.serialize(out, child, "C_bf_rank");
            structure_tree::add_size(child, written_bytes);
            return written_bytes;
        }

        //! Loads the data structure from the given istream.
        void load(std::istream& in) {
            read_member(m_size, in);
            m_bl.load(in);
            m_bf.load(in);
            m_wt.load(in);
            m_bl_rank.load(in, &m_bl);
            m_bf_rank.load(in, &m_bf);
            m_bl_select.load(in, &m_bl);
            m_bf_select.load(in, &m_bf);
            m_C.load(in);
            m_C_bf_rank.load(in);
        }
};

}// end namespace sdsl
#endif