This file is indexed.

/usr/include/sdsl/wt_pc.hpp is in libsdsl-dev 2.0.3-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
/* sdsl - succinct data structures library
    Copyright (C) 2013 Simon Gog

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program.  If not, see http://www.gnu.org/licenses/ .
*/
/*! \file wt_pc.hpp
    \brief wt_pc.hpp contains a class for the wavelet tree of byte sequences.
           The wavelet tree shape is parametrized by a prefix code.
    \author Simon Gog, Timo Beller
*/
#ifndef INCLUDED_SDSL_WT_PC
#define INCLUDED_SDSL_WT_PC

#include "bit_vectors.hpp"
#include "rank_support.hpp"
#include "select_support.hpp"
#include "wt_helper.hpp"
#include <vector>
#include <utility>
#include <tuple>

//! Namespace for the succinct data structure library.
namespace sdsl
{

//! A prefix code-shaped wavelet.
/*!
 * \tparam t_shape       Shape of the tree ().
 * \tparam t_bitvector   Underlying bitvector structure.
 * \tparam t_rank        Rank support for pattern `1` on the bitvector.
 * \tparam t_select      Select support for pattern `1` on the bitvector.
 * \tparam t_select_zero Select support for pattern `0` on the bitvector.
 * \tparam t_tree_strat  Tree strategy determines alphabet and the tree
 *                       class used to navigate the WT.
 *
 *  @ingroup wt
 */
template<class t_shape,
         class t_bitvector   = bit_vector,
         class t_rank        = typename t_bitvector::rank_1_type,
         class t_select      = typename t_bitvector::select_1_type,
         class t_select_zero = typename t_bitvector::select_0_type,
         class t_tree_strat  = byte_tree<>
         >
class wt_pc
{
    public:
        typedef typename
        t_tree_strat::template type<wt_pc>            tree_strat_type;
        typedef int_vector<>::size_type               size_type;
        typedef typename
        tree_strat_type::value_type                   value_type;
        typedef typename t_bitvector::difference_type difference_type;
        typedef random_access_const_iterator<wt_pc>   const_iterator;
        typedef const_iterator                        iterator;
        typedef t_bitvector                           bit_vector_type;
        typedef t_rank                                rank_1_type;
        typedef t_select                              select_1_type;
        typedef t_select_zero                         select_0_type;
        typedef wt_tag                                index_category;
        typedef typename
        tree_strat_type::alphabet_category            alphabet_category;
        typedef typename
        t_shape::template type<wt_pc>                 shape_type;
        enum { lex_ordered=shape_type::lex_ordered };
        using node_type = typename tree_strat_type::node_type;

    private:

#ifdef WT_PC_CACHE
        mutable value_type m_last_access_answer;
        mutable size_type  m_last_access_i;
        mutable size_type  m_last_access_rl;
#endif

        size_type        m_size  = 0;    // original text size
        size_type        m_sigma = 0;    // alphabet size
        bit_vector_type  m_bv;           // bit vector to store the wavelet tree
        rank_1_type      m_bv_rank;      // rank support for the wavelet tree bit vector
        select_1_type    m_bv_select1;   // select support for the wavelet tree bit vector
        select_0_type    m_bv_select0;
        tree_strat_type  m_tree;

        void copy(const wt_pc& wt) {
            m_size            = wt.m_size;
            m_sigma           = wt.m_sigma;
            m_bv              = wt.m_bv;
            m_bv_rank         = wt.m_bv_rank;
            m_bv_rank.set_vector(&m_bv);
            m_bv_select1    = wt.m_bv_select1;
            m_bv_select1.set_vector(&m_bv);
            m_bv_select0    = wt.m_bv_select0;
            m_bv_select0.set_vector(&m_bv);
            m_tree          = wt.m_tree;
        }

        // insert a character into the wavelet tree, see construct method
        void insert_char(value_type old_chr, std::vector<uint64_t>& bv_node_pos,
                         size_type times, bit_vector& bv) {
            uint64_t p = m_tree.bit_path(old_chr);
            uint32_t path_len = p>>56;
            node_type v = m_tree.root();
            for (uint32_t l=0; l<path_len; ++l, p >>= 1) {
                if (p&1) {
                    bv.set_int(bv_node_pos[v], 0xFFFFFFFFFFFFFFFFULL,times);
                }
                bv_node_pos[v] += times;
                v = m_tree.child(v, p&1);
            }
        }



        // calculates the tree shape returns the size of the WT bit vector
        size_type construct_tree_shape(const std::vector<size_type>& C) {
            // vector  for node of the tree
            std::vector<pc_node> temp_nodes; //(2*m_sigma-1);
            shape_type::construct_tree(C, temp_nodes);
            // Convert code tree into BFS order in memory and
            // calculate bv_pos values
            size_type bv_size = 0;
            tree_strat_type temp_tree(temp_nodes, bv_size, this);
            m_tree.swap(temp_tree);
            return bv_size;
        }

        void construct_init_rank_select() {
            util::init_support(m_bv_rank, &m_bv);
            util::init_support(m_bv_select0, &m_bv);
            util::init_support(m_bv_select1, &m_bv);
        }

        // recursive internal version of the method interval_symbols
        void
        _interval_symbols(size_type i, size_type j, size_type& k,
                          std::vector<value_type>& cs,
                          std::vector<size_type>& rank_c_i,
                          std::vector<size_type>& rank_c_j, node_type v) const {
            // invariant: j>i
            size_type i_new = (m_bv_rank(m_tree.bv_pos(v) + i)
                               - m_tree.bv_pos_rank(v));
            size_type j_new = (m_bv_rank(m_tree.bv_pos(v) + j)
                               - m_tree.bv_pos_rank(v));
            // goto left child
            i -= i_new; j -= j_new;
            if (i != j) {
                node_type v_new = m_tree.child(v, 0);
                if (!m_tree.is_leaf(v_new)) {
                    _interval_symbols(i, j, k, cs, rank_c_i, rank_c_j, v_new);
                } else {
                    rank_c_i[k] = i;
                    rank_c_j[k] = j;
                    cs[k++] = m_tree.bv_pos_rank(v_new);
                }
            }
            // goto right child
            if (i_new!=j_new) {
                node_type v_new = m_tree.child(v, 1);
                if (!m_tree.is_leaf(v_new)) {
                    _interval_symbols(i_new, j_new, k, cs, rank_c_i, rank_c_j,
                                      v_new);
                } else {
                    rank_c_i[k] = i_new;
                    rank_c_j[k] = j_new;
                    cs[k++] = m_tree.bv_pos_rank(v_new);
                }
            }
        }

    public:

        const size_type&       sigma = m_sigma;
        const bit_vector_type& bv  = m_bv;

        // Default constructor
        wt_pc() {};

        //! Construct the wavelet tree from a file_buffer
        /*!
         * \param input_buf    File buffer of the input.
         * \param size         The length of the prefix.
         * \par Time complexity
         *      \f$ \Order{n\log|\Sigma|}\f$, where \f$n=size\f$
         */
        wt_pc(int_vector_buffer<tree_strat_type::int_width>& input_buf,
              size_type size):m_size(size) {
            if (0 == m_size)
                return;
            // O(n + |\Sigma|\log|\Sigma|) algorithm for calculating node sizes
            // TODO: C should also depend on the tree_strategy. C is just a mapping
            // from a symbol to its frequency. So a map<uint64_t,uint64_t> could be
            // used for integer alphabets...
            std::vector<size_type> C;
            // 1. Count occurrences of characters
            calculate_character_occurences(input_buf, m_size, C);
            // 2. Calculate effective alphabet size
            calculate_effective_alphabet_size(C, m_sigma);
            // 3. Generate tree shape
            size_type tree_size = construct_tree_shape(C);
            // 4. Generate wavelet tree bit sequence m_bv
            bit_vector temp_bv(tree_size, 0);

            // Initializing starting position of wavelet tree nodes
            std::vector<uint64_t> bv_node_pos(m_tree.size(), 0);
            for (size_type v=0; v < m_tree.size(); ++v) {
                bv_node_pos[v] = m_tree.bv_pos(v);
            }
            if (input_buf.size() < size) {
                throw std::logic_error("Stream size is smaller than size!");
                return;
            }
            value_type old_chr = input_buf[0];
            uint32_t times = 0;
            for (size_type i=0; i < m_size; ++i) {
                value_type chr = input_buf[i];
                if (chr != old_chr) {
                    insert_char(old_chr, bv_node_pos, times, temp_bv);
                    times = 1;
                    old_chr = chr;
                } else { // chr == old_chr
                    ++times;
                    if (times == 64) {
                        insert_char(old_chr, bv_node_pos, times, temp_bv);
                        times = 0;
                    }
                }
            }
            if (times > 0) {
                insert_char(old_chr, bv_node_pos, times, temp_bv);
            }
            m_bv = bit_vector_type(std::move(temp_bv));
            // 5. Initialize rank and select data structures for m_bv
            construct_init_rank_select();
            // 6. Finish inner nodes by precalculating the bv_pos_rank values
            m_tree.init_node_ranks(m_bv_rank);
        }


        //! Copy constructor
        wt_pc(const wt_pc& wt) { copy(wt); }

        wt_pc(wt_pc&& wt) {
            *this = std::move(wt);
        }

        //! Assignment operator
        wt_pc& operator=(const wt_pc& wt) {
            if (this != &wt) {
                copy(wt);
            }
            return *this;
        }

        //! Assignment operator
        wt_pc& operator=(wt_pc&& wt) {
            if (this != &wt) {
                m_size            = wt.m_size;
                m_sigma           = wt.m_sigma;
                m_bv              = std::move(wt.m_bv);
                m_bv_rank         = std::move(wt.m_bv_rank);
                m_bv_rank.set_vector(&m_bv);
                m_bv_select1    = std::move(wt.m_bv_select1);
                m_bv_select1.set_vector(&m_bv);
                m_bv_select0    = std::move(wt.m_bv_select0);
                m_bv_select0.set_vector(&m_bv);
                m_tree          = std::move(wt.m_tree);
            }
            return *this;
        }


        //! Swap operator
        void swap(wt_pc& wt) {
            if (this != &wt) {
                std::swap(m_size, wt.m_size);
                std::swap(m_sigma,  wt.m_sigma);
                m_bv.swap(wt.m_bv);
                util::swap_support(m_bv_rank, wt.m_bv_rank,
                                   &m_bv, &(wt.m_bv));

                util::swap_support(m_bv_select1, wt.m_bv_select1,
                                   &m_bv, &(wt.m_bv));
                util::swap_support(m_bv_select0, wt.m_bv_select0,
                                   &m_bv, &(wt.m_bv));
                m_tree.swap(wt.m_tree);
            }
        }

        //! Returns the size of the original vector.
        size_type size()const { return m_size; }

        //! Returns whether the wavelet tree contains no data.
        bool empty()const { return m_size == 0; }

        //! Recovers the i-th symbol of the original vector.
        /*!
         * \param i Index in the original vector.
         * \return The i-th symbol of the original vector.
         * \par Time complexity
         *      \f$ \Order{H_0} \f$ on average, where \f$ H_0 \f$ is the
         *      zero order entropy of the sequence
         *
         * \par Precondition
         *      \f$ i < size() \f$
         */
        value_type operator[](size_type i)const {
            assert(i < size());
            // which stores how many of the next symbols are equal
            // with the current char
            node_type v = m_tree.root(); // start at root node
            while (!m_tree.is_leaf(v)) {   // while  not a leaf
                if (m_bv[ m_tree.bv_pos(v) + i]) {  // goto right child
                    i = m_bv_rank(m_tree.bv_pos(v) + i)
                        - m_tree.bv_pos_rank(v);
                    v = m_tree.child(v,1);
                } else { // goto the left child
                    i -= (m_bv_rank(m_tree.bv_pos(v) + i)
                          - m_tree.bv_pos_rank(v));
                    v = m_tree.child(v,0);
                }
            }
            // if v is a leaf bv_pos_rank returns symbol itself
            return m_tree.bv_pos_rank(v);
        };

        //! Calculates how many symbols c are in the prefix [0..i-1].
        /*!
         * \param i Exclusive right bound of the range.
         * \param c Symbol c.
         * \return Number of occurrences of symbol c in the prefix [0..i-1].
         * \par Time complexity
         *      \f$ \Order{H_0} \f$ on average, where \f$ H_0 \f$ is the
         *      zero order entropy of the sequence
         *
         * \par Precondition
         *      \f$ i \leq size() \f$
         */
        size_type rank(size_type i, value_type c)const {
            assert(i <= size());
            if (!m_tree.is_valid(m_tree.c_to_leaf(c))) {
                return 0;  // if `c` was not in the text
            }
            if (m_sigma == 1) {
                return i; // if m_sigma == 1 answer is trivial
            }
            uint64_t p = m_tree.bit_path(c);
            uint32_t path_len = (p>>56);
            size_type result = i;
            node_type v = m_tree.root();
            for (uint32_t l=0; l<path_len and result; ++l, p >>= 1) {
                if (p&1) {
                    result  = (m_bv_rank(m_tree.bv_pos(v)+result)
                               -  m_tree.bv_pos_rank(v));
                } else {
                    result -= (m_bv_rank(m_tree.bv_pos(v)+result)
                               -  m_tree.bv_pos_rank(v));
                }
                v = m_tree.child(v, p&1); // goto child
            }
            return result;
        };

        //! Calculates how many times symbol wt[i] occurs in the prefix [0..i-1].
        /*!
         * \param i The index of the symbol.
         * \return  Pair (rank(wt[i],i),wt[i])
         * \par Time complexity
         *      \f$ \Order{H_0} \f$
         *
         * \par Precondition
         *      \f$ i < size() \f$
         */
        std::pair<size_type, value_type>
        inverse_select(size_type i)const {
            assert(i < size());
            node_type v = m_tree.root();
            while (!m_tree.is_leaf(v)) {   // while not a leaf
                if (m_bv[m_tree.bv_pos(v) + i]) {   //  goto right child
                    i = (m_bv_rank(m_tree.bv_pos(v) + i)
                         - m_tree.bv_pos_rank(v));
                    v = m_tree.child(v, 1);
                } else { // goto left child
                    i -= (m_bv_rank(m_tree.bv_pos(v) + i)
                          - m_tree.bv_pos_rank(v));
                    v = m_tree.child(v,0);
                }
            }
            // if v is a leaf bv_pos_rank returns symbol itself
            return std::make_pair(i, (value_type)m_tree.bv_pos_rank(v));
        }

        //! Calculates the ith occurrence of the symbol c in the supported vector.
        /*!
         * \param i The ith occurrence.
         * \param c The symbol c.
         * \par Time complexity
         *      \f$ \Order{H_0} \f$ on average, where \f$ H_0 \f$ is the zero order
         *       entropy of the sequence
         *
         * \par Precondition
         *      \f$ 1 \leq i \leq rank(size(), c) \f$
         */
        size_type select(size_type i, value_type c)const {
            assert(1 <= i and i <= rank(size(), c));
            node_type v = m_tree.c_to_leaf(c);
            if (!m_tree.is_valid(v)) {   // if c was not in the text
                return m_size;         // -> return a position right to the end
            }
            if (m_sigma == 1) {
                return std::min(i-1,m_size);
            }
            size_type result = i-1;    // otherwise
            uint64_t p = m_tree.bit_path(c);
            uint32_t path_len = (p>>56);
            // path_len > 0, since we have handled m_sigma = 1.
            p <<= (64-path_len);
            for (uint32_t l=0; l<path_len; ++l, p <<= 1) {
                if ((p & 0x8000000000000000ULL)==0) { // node was a left child
                    v  = m_tree.parent(v);
                    result = m_bv_select0(m_tree.bv_pos(v)
                                          - m_tree.bv_pos_rank(v) + result + 1)
                             - m_tree.bv_pos(v);
                } else { // node was a right child
                    v   = m_tree.parent(v);
                    result = m_bv_select1(m_tree.bv_pos_rank(v) + result + 1)
                             - m_tree.bv_pos(v);
                }
            }
            return result;
        };


        //! For each symbol c in wt[i..j-1] get rank(i,c) and rank(j,c).
        /*!
         * \param i        The start index (inclusive) of the interval.
         * \param j        The end index (exclusive) of the interval.
         * \param k        Reference for number of different symbols in [i..j-1].
         * \param cs       Reference to a vector that will contain in
         *                 cs[0..k-1] all symbols that occur in [i..j-1] in
         *                 arbitrary order (if lex_ordered = false) and ascending
         *                 order (if lex_ordered = true).
         * \param rank_c_i Reference to a vector which equals
         *                 rank_c_i[p] = rank(i,cs[p]), for \f$ 0 \leq p < k \f$.
         * \param rank_c_j Reference to a vector which equals
         *                 rank_c_j[p] = rank(j,cs[p]), for \f$ 0 \leq p < k \f$.
         * \par Time complexity
         *      \f$ \Order{\min{\sigma, k \log \sigma}} \f$
         *
         * \par Precondition
         *      \f$ i \leq j \leq size() \f$
         *      \f$ cs.size() \geq \sigma \f$
         *      \f$ rank_{c_i}.size() \geq \sigma \f$
         *      \f$ rank_{c_j}.size() \geq \sigma \f$
         */
        void interval_symbols(size_type i, size_type j, size_type& k,
                              std::vector<value_type>& cs,
                              std::vector<size_type>& rank_c_i,
                              std::vector<size_type>& rank_c_j) const {
            assert(i <= j and j <= size());
            if (i==j) {
                k = 0;
            } else if (1==m_sigma) {
                k = 1;
                cs[0] = m_tree.bv_pos_rank(m_tree.root());
                rank_c_i[0] = std::min(i,m_size);
                rank_c_j[0] = std::min(j,m_size);
            } else if ((j-i)==1) {
                k = 1;
                auto rc = inverse_select(i);
                rank_c_i[0] = rc.first; cs[0] = rc.second;
                rank_c_j[0] = rank_c_i[0]+1;
            } else if ((j-i)==2) {
                auto rc = inverse_select(i);
                rank_c_i[0] = rc.first; cs[0] = rc.second;
                rc = inverse_select(i+1);
                rank_c_i[1] = rc.first; cs[1] = rc.second;

                if (cs[0]==cs[1]) {
                    k = 1;
                    rank_c_j[0] = rank_c_i[0]+2;
                } else {
                    k = 2;
                    if (lex_ordered and cs[0] > cs[1]) {
                        std::swap(cs[0], cs[1]);
                        std::swap(rank_c_i[0], rank_c_i[1]);
                    }
                    rank_c_j[0] = rank_c_i[0]+1;
                    rank_c_j[1] = rank_c_i[1]+1;
                }
            } else {
                k = 0;
                _interval_symbols(i, j, k, cs, rank_c_i, rank_c_j, 0);
            }
        }


        //! How many symbols are lexicographic smaller/greater than c in [i..j-1].
        /*!
         * \param i       Start index (inclusive) of the interval.
         * \param j       End index (exclusive) of the interval.
         * \param c       Symbol c.
         * \return A triple containing:
         *         * rank(i,c)
         *         * #symbols smaller than c in [i..j-1]
         *         * #symbols greater than c in [i..j-1]
         *
         * \par Precondition
         *       \f$ i \leq j \leq size() \f$
         * \note
         * This method is only available if lex_ordered = true
         */
        template<class t_ret_type = std::tuple<size_type, size_type, size_type>>
        typename std::enable_if<shape_type::lex_ordered, t_ret_type>::type
        lex_count(size_type i, size_type j, value_type c) const {
            assert(i <= j and j <= size());
            if (1==m_sigma) {
                value_type _c = m_tree.bv_pos_rank(m_tree.root());
                if (c == _c) { // c is the only symbol in the wt
                    return t_ret_type {i,0,0};
                } else if (c < _c) {
                    return t_ret_type {0,0,j-i};
                } else {
                    return t_ret_type {0,j-i,0};
                }
            }
            if (i==j) {
                return t_ret_type {rank(i,c),0,0};
            }
            uint64_t p = m_tree.bit_path(c);
            uint32_t path_len = p>>56;
            if (path_len == 0) {  // path_len=0: => c is not present
                value_type _c = (value_type)p;
                if (c == _c) {    // c is smaller than any symbol in wt
                    return t_ret_type {0, 0, j-i};
                }
                auto res = lex_count(i, j, _c);
                return t_ret_type {0, j-i-std::get<2>(res),std::get<2>(res)};
            }
            size_type smaller = 0, greater = 0;
            node_type v = m_tree.root();
            for (uint32_t l=0; l<path_len; ++l, p >>= 1) {
                size_type r1_1 = (m_bv_rank(m_tree.bv_pos(v)+i)
                                  - m_tree.bv_pos_rank(v));
                size_type r1_2 = (m_bv_rank(m_tree.bv_pos(v)+j)
                                  - m_tree.bv_pos_rank(v));

                if (p&1) {
                    smaller += j - r1_2 - i + r1_1;
                    i = r1_1;
                    j = r1_2;
                } else {
                    greater += r1_2 - r1_1;
                    i -= r1_1;
                    j -= r1_2;
                }
                v = m_tree.child(v, p&1);
            }
            return t_ret_type {i, smaller, greater};
        };

        //! How many symbols are lexicographic smaller than c in [0..i-1].
        /*!
         * \param i Exclusive right bound of the range.
         * \param c Symbol c.
         * \return A tuple containing:
         *         * rank(i,c)
         *         * #symbols smaller than c in [0..i-1]
         * \par Precondition
         *       \f$ i \leq size() \f$
         * \note
         * This method is only available if lex_ordered = true
         */
        template<class t_ret_type = std::tuple<size_type, size_type>>
        typename std::enable_if<shape_type::lex_ordered, t_ret_type>::type
        lex_smaller_count(size_type i, value_type c)const {
            assert(i <= size());
            if (1==m_sigma) {
                value_type _c = m_tree.bv_pos_rank(m_tree.root());
                if (c == _c) { // c is the only symbol in the wt
                    return t_ret_type {i,0};
                } else if (c < _c) {
                    return t_ret_type {0,0};
                } else {
                    return t_ret_type {0,i};
                }
            }

            uint64_t p = m_tree.bit_path(c);
            uint32_t path_len = p>>56;
            if (path_len == 0) {  // path_len=0: => c is not present
                value_type _c = (value_type)p;
                if (c == _c) {    // c is smaller than any symbol in wt
                    return t_ret_type {0, 0};
                }
                auto res = lex_smaller_count(i, _c);
                return t_ret_type {0, std::get<0>(res)+std::get<1>(res)};
            }
            size_type result = 0;
            size_type all    = i; // possible occurrences of c
            node_type v = m_tree.root();
            for (uint32_t l=0; l<path_len and all; ++l, p >>= 1) {
                size_type ones = (m_bv_rank(m_tree.bv_pos(v)+all)
                                  - m_tree.bv_pos_rank(v));
                if (p&1) {
                    result += all - ones;
                    all    = ones;
                } else {
                    all    -= ones;
                }
                v = m_tree.child(v, p&1);
            }
            return t_ret_type {all, result};
        }

        //! Returns a const_iterator to the first element.
        const_iterator begin()const {
            return const_iterator(this, 0);
        }

        //! Returns a const_iterator to the element after the last element.
        const_iterator end()const {
            return const_iterator(this, size());
        }

        //! Serializes the data structure into the given ostream
        size_type serialize(std::ostream& out, structure_tree_node* v=nullptr,
                            std::string name="") const {
            structure_tree_node* child = structure_tree::add_child(
                                             v, name, util::class_name(*this));
            size_type written_bytes = 0;
            written_bytes += write_member(m_size,out,child, "size");
            written_bytes += write_member(m_sigma,out,child, "sigma");
            written_bytes += m_bv.serialize(out,child,"bv");
            written_bytes += m_bv_rank.serialize(out,child,"bv_rank");
            written_bytes += m_bv_select1.serialize(out,child,"bv_select_1");
            written_bytes += m_bv_select0.serialize(out,child,"bv_select_0");
            written_bytes += m_tree.serialize(out,child,"tree");
            structure_tree::add_size(child, written_bytes);
            return written_bytes;
        }

        //! Loads the data structure from the given istream.
        void load(std::istream& in) {
            read_member(m_size, in);
            read_member(m_sigma, in);
            m_bv.load(in);
            m_bv_rank.load(in, &m_bv);
            m_bv_select1.load(in, &m_bv);
            m_bv_select0.load(in, &m_bv);
            m_tree.load(in);
        }

        //! Checks if the node is a leaf node
        bool is_leaf(const node_type& v) const {
            return m_tree.is_leaf(v);
        }

        //! Symbol for a leaf
        value_type sym(const node_type& v) const {
            return m_tree.bv_pos_rank(v);
        }

        bool empty(const node_type&) const {
            return true;
        }

        //! Returns the root node
        node_type root() const {
            return m_tree.root();
        }

        //! Returns the two child nodes of an inner node
        /*! \param v An inner node of a wavelet tree.
         *  \return Return a pair of nodes (left child, right child).
         *  \pre !is_leaf(v)
         */
        std::pair<node_type, node_type>
        expand(const node_type& v) const {
            return std::make_pair(m_tree.child(v,0), m_tree.child(v,1));
        }

        //! Returns for each range its left and right child ranges
        /*! \param v      An inner node of an wavelet tree.
         *  \param ranges A vector of ranges. Each range [s,e]
         *                has to be contained in v=[v_s,v_e].
         *  \return A vector a range pairs. The first element of each
         *          range pair correspond to the original range
         *          mapped to the left child of v; the second element to the
         *          range mapped to the right child of v.
         *  \pre !is_leaf(v) and s>=v_s and e<=v_e
         */
        std::pair<range_vec_type, range_vec_type>
        expand(const node_type& v,
               const range_vec_type& ranges) const {
            auto ranges_copy = ranges;
            return expand(v, std::move(ranges_copy));
        }

        //! Returns for each range its left and right child ranges
        /*! \param v      An inner node of an wavelet tree.
         *  \param ranges A vector of ranges. Each range [s,e]
         *                has to be contained in v=[v_s,v_e].
         *  \return A vector a range pairs. The first element of each
         *          range pair correspond to the original range
         *          mapped to the left child of v; the second element to the
         *          range mapped to the right child of v.
         *  \pre !is_leaf(v) and s>=v_s and e<=v_e
         */
        std::pair<range_vec_type, range_vec_type>
        expand(const node_type& v,
               range_vec_type&& ranges) const {
            auto v_sp_rank = m_tree.bv_pos_rank(v);
            range_vec_type res(ranges.size());
            size_t i = 0;
            for (auto& r : ranges) {
                auto sp_rank    = m_bv_rank(m_tree.bv_pos(v) + r.first);
                auto right_size = m_bv_rank(m_tree.bv_pos(v) + r.second + 1)
                                  - sp_rank;
                auto left_size  = (r.second-r.first+1)-right_size;

                auto right_sp = sp_rank - v_sp_rank;
                auto left_sp  = r.first - right_sp;

                r = range_type(left_sp, left_sp + left_size - 1);
                res[i++] = range_type(right_sp, right_sp + right_size - 1);
            }
            return make_pair(ranges, std::move(res));
        }

        //! Returns for a range its left and right child ranges
        /*! \param v An inner node of an wavelet tree.
         *  \param r A ranges [s,e], such that [s,e] is
         *           contained in v=[v_s,v_e].
         *  \return A range pair. The first element of the
         *          range pair correspond to the original range
         *          mapped to the left child of v; the second element to the
         *          range mapped to the right child of v.
         *  \pre !is_leaf(v) and s>=v_s and e<=v_e
         */
        std::pair<range_type, range_type>
        expand(const node_type& v, const range_type& r) const {
            auto v_sp_rank = m_tree.bv_pos_rank(v);
            auto sp_rank    = m_bv_rank(m_tree.bv_pos(v) + r.first);
            auto right_size = m_bv_rank(m_tree.bv_pos(v) + r.second + 1)
                              - sp_rank;
            auto left_size  = (r.second-r.first+1)-right_size;

            auto right_sp = sp_rank - v_sp_rank;
            auto left_sp  = r.first - right_sp;

            return make_pair(range_type(left_sp, left_sp + left_size - 1),
                             range_type(right_sp, right_sp + right_size - 1));
        }

        //! return the path to the leaf for a given symbol
        std::pair<uint64_t,uint64_t> path(value_type c) const {
            uint64_t path = m_tree.bit_path(c);
            uint64_t path_len = path >> 56;
            // reverse the path till we fix the ordering
            path = bits::rev(path);
            path = path >> (64-path_len); // remove the length
            return {path_len,path};
        }

        //! Returns for a symbol c the next larger or equal symbol in the WT.
        /*! \param c the symbol
         *  \return A pair. The first element of the pair consititues if
         *          a valid answer was found (true) or no valid answer (false)
         *          could be found. The second element contains the found symbol.
         */
        std::pair<bool, value_type> symbol_gte(value_type c) const {
            return m_tree.symbol_gte(c);
        }

        //! Returns for a symbol c the previous smaller or equal symbol in the WT.
        /*! \param c the symbol
         *  \return A pair. The first element of the pair consititues if
         *          a valid answer was found (true) or no valid answer (false)
         *          could be found. The second element contains the found symbol.
         */
        std::pair<bool, value_type> symbol_lte(value_type c) const {
            return m_tree.symbol_lte(c);
        }
};

}

#endif