This file is indexed.

/usr/include/sdsl/wt_hutu.hpp is in libsdsl-dev 2.0.3-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
/* sdsl - succinct data structures library
    Copyright (C) 2013 Simon Gog, Timo Beller and Markus Brenner

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program.  If not, see http://www.gnu.org/licenses/ .
*/
/*! \file wt_hutu.hpp
    \brief wt_hutu.hpp contains a class for a Hu-Tucker shaped wavelet tree
           over byte sequences.
    \author Simon Gog, Markus Brenner
*/
#ifndef INCLUDED_SDSL_WT_HUTU
#define INCLUDED_SDSL_WT_HUTU

#include "wt_pc.hpp"
#include <vector>

//! Namespace for the succinct data structure library.
namespace sdsl
{

// forward declaration
struct hutu_shape;

//! A Hu-Tucker-shaped wavelet tree.
/*!
 *  \tparam t_bitvector   Underlying bitvector structure.
 *  \tparam t_rank        Rank support for pattern `1` on the bitvector.
 *  \tparam t_select      Select support for pattern `1` on the bitvector.
 *  \tparam t_select_zero Select support for pattern `0` on the bitvector.
 *  \tparam t_dfs_shape   Layout of the tree structure in memory. Set 0
 *                        for BFS layout and 1 fro DFS layout.
 *  \par Space complexity
 *     Almost \f$n H_0 + 2|\Sigma|\log n\f$ bits, where \f$n\f$ is the size of
 *     the vector the wavelet tree was build for.
 *
 *   @ingroup wt
 */
template<class t_bitvector   = bit_vector,
         class t_rank        = typename t_bitvector::rank_1_type,
         class t_select      = typename t_bitvector::select_1_type,
         class t_select_zero = typename t_bitvector::select_0_type,
         class t_tree_strat  = byte_tree<> >
using wt_hutu = wt_pc<hutu_shape,
      t_bitvector,
      t_rank,
      t_select,
      t_select_zero,
      t_tree_strat>;

// Hu Tucker shape for wt_pc
template<class t_wt>
struct _hutu_shape {
        typedef typename t_wt::size_type size_type;
        enum { lex_ordered = 1 };

        //! Node class used by the leftist heap
        template <class t_element>
        struct heap_node {
            t_element* item;   // pointer to the represented item
            heap_node* left, *right, *parent;  // pointer to left/right child, parent
            int64_t rank; // rank of the heap node
            //! Constructor
            heap_node(t_element* it=nullptr) : item(it), left(nullptr),
                right(nullptr), parent(nullptr),
                rank(0) { }
            //! Less then operator
            bool operator< (const heap_node& other) {
                return *item < *(other.item);
            }
        };

        // Implementation of a leftist heap as needed in the first phase of
        // Hu-Tucker Code construction
        template <class t_element>
        class l_heap
        {
            private:
                heap_node<t_element>* m_root;  // pointer to the root

                // fixes node information after the deletion of elements
                void fix_node(heap_node<t_element>* item) {
                    if (item != nullptr) {
                        if (!item->left || !item->right) { // if node has only one child
                            // only go on fixing if the node information needs to be changed
                            if (item->rank != 0) {
                                item->rank = 0;
                                if (item->parent) fix_node(item->parent);
                            }
                        } else { // node information has to be adapted
                            int64_t nn = (item->left->rank > item->right->rank) ? item->right->rank : item->left->rank;
                            if (item->rank != nn && item->parent != 0) {
                                item->rank = nn;
                                fix_node(item->parent);
                            }
                        }
                    }
                }

                // helper function to remove the data structure from memory
                void free_node(heap_node<t_element>* item) {
                    if (item->left) {
                        free_node(item->left);
                        delete item->left;
                        item->left = nullptr;
                    }
                    if (item->right) {
                        free_node(item->right);
                        delete item->right;
                        item->right = nullptr;
                    }
                }

                // internal merge function
                heap_node<t_element>* merge(heap_node<t_element>* h1, heap_node<t_element>* h2) {
                    if (!h1) return h2;
                    if (!h2) return h1;
                    if (*(h1->item) < *(h2->item))  return merge1(h1, h2);
                    else                            return merge1(h2, h1);
                }
                // internal merge function
                heap_node<t_element>* merge1(heap_node<t_element>* h1, heap_node<t_element>* h2) {
                    if (!h1->left) { // if h1 has no children, the merge is simple
                        h1->left = h2;
                        h2->parent = h1; // adjust the parent pointer
                    } else {
                        h1->right = merge(h1->right, h2);
                        if (h1->right) h1->right->parent = h1;

                        if (h1->left->rank < h1->right->rank) {
                            heap_node<t_element>* tmp = h1->left;
                            h1->left = h1->right;
                            h1->right = tmp;
                        }
                        h1 -> rank = h1 -> right -> rank + 1;
                    }
                    return h1;
                }

            public:

                //! Default constructor
                l_heap() : m_root(nullptr) { }

                //! Indicates if the heap is empty
                bool empty() const {
                    return (m_root==nullptr);
                }

                //! Get the smallest element
                /*! \return The smallest element in the heap
                 *          or nullptr if it does not exist.
                 */
                heap_node<t_element>* find_min() const {
                    return m_root;
                }

                //! Get the second smallest element
                /*! \return The second smallest element in the heap
                 *         or nullptr if it does not exist.
                 */
                heap_node<t_element>* find_snd_min() const {
                    if (m_root == nullptr) return nullptr;
                    if (m_root->left == nullptr) return m_root->right;
                    if (m_root->right == nullptr) return m_root->left;

                    if (m_root->left->operator< (*m_root->right)) return m_root->left;
                    else return m_root->right;
                }

                //! Insert an element into the heap
                /*! \param  x Element that is inserted into the heap.
                 *  \return The new generated heap node.
                 */
                heap_node<t_element>* insert(t_element* x) {
                    heap_node<t_element>* n = new heap_node<t_element>(x);
                    l_heap<t_element> lh;
                    lh.m_root = n;
                    merge(&lh);
                    return n;
                }

                //! Delete the smallest element in the heap
                void delete_min() {
                    heap_node<t_element>* old_root = m_root;
                    m_root = merge(m_root->left, m_root->right);
                    if (m_root) m_root->parent = nullptr;
                    delete old_root;
                }

                // deletes an arbitrary element from the heap
                // this function assumes, that item is an element of the heap
                void delete_element(heap_node<t_element>* item) {
                    if (item != nullptr) {
                        if (m_root == item) { // deleting the root is trivial
                            delete_min();
                        } else {
                            // otherwise we have to adapt the parent node and
                            // the children of item
                            heap_node<t_element>* h1 = merge(item->left,item->right);
                            if (h1) h1->parent = item->parent;
                            if (item == item->parent->left) {
                                item->parent->left = h1;
                            } else if (item == item->parent->right) {
                                item->parent->right = h1;
                            }
                            // fix node information considering rank
                            fix_node(item->parent);
                            delete item; // remove the item from memory
                        }
                    }
                }

                // public merge function
                void merge(l_heap<t_element>* rhs) {
                    m_root = merge(m_root, rhs->m_root);
                    rhs->m_root = nullptr;
                }

                // removes the whole data structure from memory
                void free_memory() {
                    if (m_root != nullptr) {
                        free_node(m_root);
                        delete m_root;
                        m_root = nullptr;
                    }
                }
        };


        // forward declaration of node classes
        struct ht_node;

        // Master node as used in the first phase of the Hu-Tucker algorithm
        struct m_node {
            // min sum of the two min elements of the hpq this node points to
            size_type min_sum;
            int64_t i; // position of the left node in the working sequence
            int64_t j; // position of the right node in the working sequence
            // pointer to the corresponding heap element (used for deletion)
            heap_node<m_node>* qel;
            l_heap<ht_node>* myhpq;  // pointer to the hpq

            ht_node* lt;  // pointer to the left- and rightmost leafs of the hpq
            ht_node* rt;  // need for merge operations

            m_node() : qel(0), myhpq(0), lt(0), rt(0) { }

            bool operator<(const m_node other) {
                if (min_sum != other.min_sum) {
                    return min_sum < other.min_sum;
                }
                if (i != other.i) {
                    return i < other.i;
                }
                return j < other.j;
            }

            bool operator> (const m_node other) {
                return other < *this;
            }
        };

        // Hu-Tucker node as used in the first phase of the Hu-Tucker algorithm
        struct ht_node {
            int64_t   pos;   // position of the node
            uint64_t  c;     // the represented letter
            size_type w;     // frequency of the node
            bool      t;     // whether the node is a leaf
            int64_t   level; // level in the tree

            // pointer to the two master nodes
            // (as a node can belong to up to two hpqs)
            m_node*  mpql;
            m_node*  mpqr; // only mpql is used for inner nodes
            // pointer to the two heap nodes (as a node can belong to up to two hpqs)
            heap_node<ht_node>* ql;
            heap_node<ht_node>* qr; // only ql is used for inner nodes
            ht_node* left;  // left child
            ht_node* right; // right child

            ht_node() : mpql(0), mpqr(0), ql(0), qr(0),
                left(nullptr), right(nullptr) { }

            bool operator< (const ht_node& other) {
                if (w != other.w) {
                    return w < other.w;
                }
                return pos < other.pos;
            }

            bool operator> (const ht_node& other) {
                return other < *this;
            }
        };


        template<class t_rac>
        static void
        construct_tree(t_rac& C, std::vector<pc_node>& temp_nodes) {
            //create a leaf for every letter
            std::vector<ht_node> node_vector;
            for (size_t i = 0; i < C.size(); i++) {
                if (C[i]) {
                    ht_node n;
                    n.c = (uint64_t)i;
                    n.w = C[i];
                    n.t = true;
                    n.pos = node_vector.size();
                    node_vector.push_back(n);
                }
            }
            if (node_vector.size() == 1) {
                // special case of an alphabet of size 1:
                // just instantly create the tree and return it
                temp_nodes.emplace_back(pc_node(node_vector[0].w,
                                                (size_type)node_vector[0].c));
                return;
            }
            size_type       sigma = node_vector.size();
            std::vector<ht_node>  T(sigma); // physical leaves
            std::vector<ht_node*> A(sigma); // the current working sequence
            // Priority Queues, containing the Huffman Sequences
            std::vector<l_heap<ht_node>> HPQ(sigma);
            l_heap<m_node>  MPQ;      // Master Priority Queue

            // init T, A, HPQs and MPQ
            T[0] = node_vector[0];
            A[0] = &T[0];

            // initialization needed for every leaf
            for (size_type i = 1; i < sigma; i++) {
                T[i] = node_vector[i];
                A[i] = &T[i];

                T[i - 1].qr = HPQ[i - 1].insert(&T[i - 1]);
                T[i].ql = HPQ[i - 1].insert(&T[i]);

                m_node* m = new m_node();
                m->min_sum = T[i - 1].w + T[i].w;
                m->i = i - 1;
                m->j = i;
                m->lt = &T[i-1];
                m->rt = &T[i];
                m->myhpq = &HPQ[i - 1];

                m->qel = MPQ.insert(m);

                T[i-1].mpqr = m;
                T[i].mpql = m;
            }

            // main action loop
            for (size_type k = 1; k < sigma; k++) {
                m_node* m = MPQ.find_min()->item;
                ht_node* l = A[m->i];
                ht_node* r = A[m->j];
                int64_t lpos = m->i;
                int64_t rpos = m->j;

                l_heap<ht_node>* n_hpq = nullptr;
                ht_node* n_rt = nullptr;
                ht_node* n_lt = nullptr;

                // create a new master priority queue
                m_node* n_m = new m_node();
                // delete old nodes from all hpqs
                if (l->t) {
                    if (l->mpql) l->mpql->myhpq->delete_element(l->ql);
                    l->ql = nullptr;
                    if (l->mpqr) l->mpqr->myhpq->delete_element(l->qr);
                    l->qr = nullptr;
                } else {
                    m->myhpq->delete_element(l->ql);
                    l->ql = nullptr;
                }
                if (r->t) {
                    if (r->mpql) r->mpql->myhpq->delete_element(r->ql);
                    l->ql = nullptr;

                    if (r->mpqr) r->mpqr->myhpq->delete_element(r->qr);
                    r->qr = nullptr;
                } else {
                    m->myhpq->delete_element(r->ql);
                    r->ql = nullptr;
                }
                // handle the merge of hpqs
                if (l->t && r ->t) {
                    // both nodes are leaves
                    l_heap<ht_node>* h1 = nullptr;
                    l_heap<ht_node>* h2 = nullptr;
                    l_heap<ht_node>* h3 = nullptr;
                    if (l -> mpql) {
                        n_lt = l->mpql->lt;
                        if (n_lt == l) n_lt = nullptr;
                        if (n_lt) n_lt -> mpqr = n_m;

                        h1 = l->mpql->myhpq;
                        h2 = l->mpqr->myhpq;

                        h1 -> merge(h2);
                        MPQ.delete_element(l->mpql->qel);
                        MPQ.delete_element(l->mpqr->qel);
                        delete l->mpql;
                        delete l->mpqr;

                    } else {
                        h1 = l->mpqr->myhpq;
                        h2 = l->mpqr->myhpq;
                        n_lt = nullptr;

                        MPQ.delete_element(l->mpqr->qel);
                        delete l->mpqr;
                    }
                    if (r->mpqr) {
                        n_rt = r->mpqr->rt;
                        if (n_rt == r) n_rt = nullptr;
                        if (n_rt) n_rt -> mpql = n_m;

                        h3 = r->mpqr->myhpq;
                        h1->merge(h3);
                        MPQ.delete_element(r->mpqr->qel);
                        delete r->mpqr;

                        n_hpq = h1;
                        if (n_rt) n_rt -> mpql = n_m;
                    } else {
                        n_rt = nullptr;
                        n_hpq = h1;
                    }
                } else if (l->t) { // the left node is a leaf
                    if (l->mpql) {
                        n_lt = l->mpql->lt;
                        if (n_lt) n_lt->mpqr = n_m;
                        n_rt = l->mpqr->rt;
                        if (n_rt) n_rt ->mpql = n_m;

                        l -> mpql ->myhpq -> merge(l->mpqr->myhpq);
                        n_hpq=l->mpql->myhpq;
                        MPQ.delete_element(l->mpql->qel);
                        MPQ.delete_element(l->mpqr->qel);
                        delete l->mpql;
                        delete l->mpqr;
                    } else {
                        n_lt = nullptr;
                        n_rt = l->mpqr->rt;
                        if (n_rt) n_rt->mpql = n_m;

                        n_hpq = l->mpqr->myhpq;
                        MPQ.delete_element(l->mpqr->qel);
                        delete l->mpqr;
                    }
                } else if (r->t) { // right node is a leaf
                    if (r->mpqr) {
                        n_lt = r->mpql->lt;
                        if (n_lt) n_lt->mpqr = n_m;
                        n_rt = r->mpqr->rt;
                        if (n_rt) n_rt->mpql = n_m;

                        r -> mpql ->myhpq -> merge(r->mpqr->myhpq);
                        n_hpq=r->mpql->myhpq;
                        MPQ.delete_element(r->mpql->qel);
                        MPQ.delete_element(r->mpqr->qel);
                        delete r->mpql;
                        delete r->mpqr;
                    } else {
                        n_lt = r->mpql->lt;
                        if (n_lt) n_lt->mpqr = n_m;
                        n_rt = nullptr;

                        n_hpq = r->mpql->myhpq;
                        MPQ.delete_element(r->mpql->qel);
                        delete r->mpql;
                    }
                } else {
                    // merge of two inner nodes
                    // no need to merge hpqs
                    MPQ.delete_element(m->qel);

                    n_hpq = m->myhpq;
                    n_lt = m->lt;
                    n_rt = m->rt;

                    if (n_lt) n_lt->mpqr = n_m;
                    if (n_rt) n_rt->mpql = n_m;

                    delete m;
                }

                // create a new node with the information gained above
                ht_node* new_node = new ht_node();
                new_node -> c = ' ';
                new_node -> w = l->w + r->w;
                new_node -> t = false;
                new_node -> pos = lpos;
                new_node -> left = l;
                new_node -> right = r;
                // insert node to the correct hpq
                new_node -> ql = n_hpq->insert(new_node);

                // update working sequence
                A[lpos] = new_node;
                A[rpos] = nullptr;
                // update information in the new master node and reinsert it to mpq
                ht_node* tmp_min = n_hpq->find_min()->item;
                heap_node<ht_node>* tmpsnd = n_hpq->find_snd_min();
                if (tmpsnd) {
                    ht_node* tmp_snd = n_hpq->find_snd_min()->item;
                    n_m->min_sum = tmp_min->w + tmp_snd->w;

                    if (tmp_min -> pos < tmp_snd->pos) {
                        n_m->i = tmp_min -> pos;
                        n_m->j = tmp_snd -> pos;
                    } else {
                        n_m->i = tmp_snd -> pos;
                        n_m->j = tmp_min -> pos;
                    }
                    n_m->qel = MPQ.insert(n_m);
                    n_m->myhpq = n_hpq;
                    n_m->lt = n_lt;
                    n_m->rt = n_rt;
                } else {
                    // free the last remaining hpq
                    n_hpq->free_memory();
                    delete n_m;
                }
            }

            // level assignment and deletion of unneeded nodes
            assign_level(A[0], 0);

            // reconstruction phase using the stack algorithm
            ht_node* stack[sigma];

            for (size_type i = 0; i < sigma; i++) {
                stack[i] = nullptr;
                temp_nodes.emplace_back(pc_node(T[i].w, (size_type)T[i].c));
                T[i].pos = i;
            }

            int64_t spointer = -1;
            uint64_t qpointer = 0; // use the Array T as a stack
            int64_t max_nodes = sigma;
            while (qpointer < sigma or spointer >= 1LL) {
                if (spointer >= 1LL and
                    (stack[spointer]->level == stack[spointer-1]->level)) {
                    ht_node* n_node = new ht_node();
                    max_nodes++;
                    n_node->t = false;
                    n_node->left = stack[spointer-1];
                    n_node->right = stack[spointer];
                    n_node->level = stack[spointer]->level-1;
                    n_node->w = stack[spointer]->w + stack[spointer-1]->w;
                    n_node->c = '|';

                    n_node->pos = temp_nodes.size();
                    temp_nodes[stack[spointer-1]->pos].parent = temp_nodes.size();
                    temp_nodes[stack[spointer]->pos].parent = temp_nodes.size();
                    temp_nodes.emplace_back(pc_node(n_node->w, 0,
                                                    pc_node::undef,
                                                    stack[spointer-1]->pos,
                                                    stack[spointer]->pos));

                    if (!stack[spointer-1]->t) delete stack[spointer-1];
                    if (!stack[spointer]->t) delete stack[spointer];

                    stack[--spointer] = n_node;
                } else {
                    stack[++spointer] = &T[qpointer++];
                }
            }
            delete stack[0];
        }

        static void assign_level(ht_node* n, int64_t lvl) {
            if (n) {
                n->level = lvl;
                assign_level(n->left, lvl + 1);
                assign_level(n->right, lvl + 1);

                if (!n->t) {
                    delete n;
                }
            }
        }
};

struct hutu_shape {
    template<class t_wt>
    using type = _hutu_shape<t_wt>;
};



}// end namespace sdsl

#endif // end file