This file is indexed.

/usr/include/sdsl/wt_helper.hpp is in libsdsl-dev 2.0.3-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
#ifndef INCLUDED_SDSL_WT_HELPER
#define INCLUDED_SDSL_WT_HELPER

#include "int_vector.hpp"
#include <algorithm>
#include <limits>
#include <deque>
#include <queue>
#include <vector>
#include <utility>

namespace sdsl
{

typedef std::pair<int_vector<>::size_type, int_vector<>::size_type> range_type;
typedef std::vector<range_type>         range_vec_type;

//! Empty range check
/*! \param r Range to check
 *  \returns True if the range is empty, false otherwise.
 */
bool empty(const range_type& r);

//! Size of a range
/*! \param r Range to check
 *  \returns True if the range is empty, false otherwise.
 */
int_vector<>::size_type size(const range_type& r);

//! Count for each character the number of occurrences in rac[0..size-1]
/*!
 * \param C An array of size 256, which contains for each character the number of occurrences in rac[0..size-1]
 */
template<class t_file_buffer,class t_rac>
void calculate_character_occurences(t_file_buffer& text, const int_vector_size_type size, t_rac& C)
{
    C = t_rac();
    if (text.size() < size) {
        throw std::logic_error("calculate_character_occurrences: stream size is smaller than size!");
        return;
    }
    for (int_vector_size_type i=0; i < size; ++i) {
        uint64_t c = text[i];
        if (c >= C.size()) { C.resize(c+1, 0); }
        ++C[c];
    }
}


template<class t_rac, class sigma_type>
void calculate_effective_alphabet_size(const t_rac& C, sigma_type& sigma)
{
    sigma = std::count_if(begin(C),end(C),[](decltype(*begin(C)) &x) {
        return x > 0;
    });
}

struct pc_node {
    uint64_t  freq;     // frequency of symbol sym
    uint64_t  sym;      // symbol
    uint64_t  parent;   // pointer to the parent
    uint64_t  child[2]; // pointer to the children

    enum :uint64_t {undef = 0xFFFFFFFFFFFFFFFFULL}; // max uint64_t value

    pc_node(uint64_t freq=0, uint64_t sym=0, uint64_t parent=undef,
            uint64_t child_left=undef, uint64_t child_right=undef);

    pc_node& operator=(const pc_node& v);
};

template<class t_tree_strat_fat>
struct _node {
    using node_type = typename t_tree_strat_fat::node_type;
    typedef uint64_t size_type;
    uint64_t bv_pos      = 0;             // pointer into the bit_vector, which represents the wavelet tree
    uint64_t bv_pos_rank = 0;             // pre-calculated rank for the prefix up to but not including bv_pos
    node_type parent      = t_tree_strat_fat::undef; // pointer to the parent
    node_type child[2]    = {t_tree_strat_fat::undef,t_tree_strat_fat::undef}; // pointer to the children

    _node(uint64_t bv_pos=0, uint64_t bv_pos_rank=0, node_type parent=t_tree_strat_fat::undef,
          node_type child_left=t_tree_strat_fat::undef, node_type child_right=t_tree_strat_fat::undef):
        bv_pos(bv_pos), bv_pos_rank(bv_pos_rank), parent(parent) {
        child[0] = child_left;
        child[1] = child_right;
    }

    _node& operator=(const _node& v) {
        if (this != &v) {
            bv_pos      = v.bv_pos;
            bv_pos_rank = v.bv_pos_rank;
            parent        = v.parent;
            child[0]      = v.child[0];
            child[1]      = v.child[1];
        }
        return *this;
    }

    _node& operator=(const pc_node& v) {
        bv_pos      = v.freq;
        bv_pos_rank = v.sym;
        parent        = v.parent;
        child[0]      = v.child[0];
        child[1]      = v.child[1];
        return *this;
    }

    size_type serialize(std::ostream& out, structure_tree_node* v=nullptr, std::string name="")const {
        structure_tree_node* st_child = structure_tree::add_child(v, name, util::class_name(*this));
        uint64_t written_bytes = 0;
        written_bytes += write_member(bv_pos, out);
        written_bytes += write_member(bv_pos_rank, out);
        written_bytes += write_member(parent, out);
        out.write((char*)child, 2*sizeof(child[0]));
        written_bytes += 2*sizeof(child[0]);
        structure_tree::add_size(st_child, written_bytes);
        return written_bytes;
    }

    void load(std::istream& in) {
        read_member(bv_pos, in);
        read_member(bv_pos_rank, in);
        read_member(parent, in);
        in.read((char*) child, 2*sizeof(child[0]));
    }
};

// TODO: version of _byte_tree for lex_ordered tree shapes
//       m_c_to_leaf can be compressed and
//       m_path is only needed for sigma chars

// Strategy class for tree representation of a WT
template<bool t_dfs_shape, class t_wt>
struct _byte_tree {
    using alphabet_category = byte_alphabet_tag;
    using value_type = uint8_t;
    using node_type = uint16_t; // node is represented by index in m_nodes
    using data_node = _node<_byte_tree>;
    enum :uint16_t {undef       = 0xFFFF}; // max uint16_t value
    enum :uint32_t {fixed_sigma = 256};
    enum :uint8_t {int_width   = 8};      // width of the input integers



    std::vector<data_node> m_nodes;              // nodes for the prefix code tree structure
    node_type          m_c_to_leaf[fixed_sigma]; // map symbol c to a leaf in the tree structure
    // if m_c_to_leaf[c] == undef the char does
    // not exists in the text
    uint64_t           m_path[fixed_sigma];      // path information for each char; the bits at position
    // 0..55 hold path information; bits 56..63 the length
    // of the path in binary representation

    void copy(const _byte_tree& bt) {
        m_nodes = bt.m_nodes;
        for (uint32_t i=0; i<fixed_sigma; ++i)
            m_c_to_leaf[i] = bt.m_c_to_leaf[i];
        for (uint32_t i=0; i<fixed_sigma; ++i)
            m_path[i] = bt.m_path[i];
    }

    _byte_tree() {}

    _byte_tree(const std::vector<pc_node>& temp_nodes, uint64_t& bv_size, const t_wt*) {
        m_nodes.resize(temp_nodes.size());
        m_nodes[0] = temp_nodes.back(); // insert root at index 0
        bv_size = 0;
        size_t node_cnt = 1;
        node_type last_parent = undef;
        std::deque<node_type> q;
        q.push_back(0);
        while (!q.empty()) {
            node_type idx;
            if (!t_dfs_shape) {
                idx = q.front(); q.pop_front();
            } else {
                idx = q.back(); q.pop_back();
            }
            // frq_sum is store in bv_pos value
            uint64_t frq = m_nodes[idx].bv_pos;
            m_nodes[idx].bv_pos = bv_size;
            if (m_nodes[idx].child[0] != undef) // if node is not a leaf
                bv_size += frq;               // add frequency
            if (idx > 0) { // node is not the root
                if (last_parent != m_nodes[idx].parent)
                    m_nodes[m_nodes[idx].parent].child[0] = idx;
                else
                    m_nodes[m_nodes[idx].parent].child[1] = idx;
                last_parent = m_nodes[idx].parent;
            }
            if (m_nodes[idx].child[0] != undef) { // if node is not a leaf
                for (uint32_t k=0; k<2; ++k) {       // add children to tree
                    m_nodes[node_cnt] = temp_nodes[ m_nodes[idx].child[k] ];
                    m_nodes[node_cnt].parent = idx;
                    q.push_back(node_cnt);
                    m_nodes[idx].child[k] = node_cnt++;
                }
            }
        }
        // initialize m_c_to_leaf
        for (uint32_t i=0; i<fixed_sigma; ++i)
            m_c_to_leaf[i] = undef; // if c is not in the alphabet m_c_to_leaf[c] = undef
        for (node_type v=0; v < m_nodes.size(); ++v) {
            if (m_nodes[v].child[0] == undef)               // if node is a leaf
                m_c_to_leaf[(uint8_t)m_nodes[v].bv_pos_rank] = v; // calculate value
        }
        // initialize path information
        // Note: In the case of a bfs search order,
        // we can classify nodes as right child and left child with an easy criterion:
        //   node is a left child, if node%2==1
        //   node is a right child, if node%2==0
        for (uint32_t c=0, prev_c=0; c<fixed_sigma; ++c) {
            if (m_c_to_leaf[c] != undef) { // if char exists in the alphabet
                node_type v = m_c_to_leaf[c];
                uint64_t pw = 0; // path
                uint64_t pl = 0; // path len
                while (v != root()) {   // while node is not the root
                    pw <<= 1;
                    if (m_nodes[m_nodes[v].parent].child[1] == v) // if the node is a right child
                        pw |= 1ULL;
                    ++pl;
                    v = m_nodes[v].parent; // go up the tree
                }
                if (pl > 56) {
                    throw std::logic_error("Code depth greater than 56!!!");
                }
                m_path[c] = pw | (pl << 56);
                prev_c = c;
            } else {
                uint64_t pl = 0; // len is  0, good for special case in rank
                m_path[c] = prev_c | (pl << 56);
            }
        }
    }

    template<class t_rank_type>
    void init_node_ranks(const t_rank_type& rank) {
        for (uint64_t i=0; i<m_nodes.size(); ++i) {
            if (m_nodes[i].child[0] != undef)  // if node is not a leaf
                m_nodes[i].bv_pos_rank = rank.rank(m_nodes[i].bv_pos);
        }
    }

    _byte_tree(const _byte_tree& bt) {
        copy(bt);
    }

    void swap(_byte_tree& bt) {
        std::swap(m_nodes, bt.m_nodes);
        for (uint32_t i=0; i<fixed_sigma; ++i) {
            std::swap(m_c_to_leaf[i], bt.m_c_to_leaf[i]);
            std::swap(m_path[i], bt.m_path[i]);
        }
    }

    _byte_tree& operator=(const _byte_tree& bt) {
        if (this != &bt) {
            copy(bt);
        }
        return *this;
    }

    //! Serializes the data structure into the given ostream
    uint64_t serialize(std::ostream& out, structure_tree_node* v=nullptr,
                       std::string name="") const {
        structure_tree_node* child = structure_tree::add_child(
                                         v, name, util::class_name(*this));
        uint64_t written_bytes = 0;
        uint64_t m_nodes_size = m_nodes.size();
        write_member(m_nodes_size, out, child, "m_nodes.size()");
        serialize_vector(m_nodes, out, child, "m_nodes");
        out.write((char*) m_c_to_leaf, fixed_sigma*sizeof(m_c_to_leaf[0]));
        written_bytes += fixed_sigma*sizeof(m_c_to_leaf[0]);// bytes from previous loop
        out.write((char*) m_path, fixed_sigma*sizeof(m_path[0]));
        written_bytes += fixed_sigma*sizeof(m_path[0]);// bytes from previous loop
        structure_tree::add_size(child, written_bytes);
        return written_bytes;
    }

    //! Loads the data structure from the given istream.
    void load(std::istream& in) {
        uint64_t m_nodes_size = 0;
        read_member(m_nodes_size, in);
        m_nodes = std::vector<data_node>(m_nodes_size);
        load_vector(m_nodes, in);
        in.read((char*) m_c_to_leaf, fixed_sigma*sizeof(m_c_to_leaf[0]));
        in.read((char*) m_path, fixed_sigma*sizeof(m_path[0]));
    }

    //! Get corresponding leaf for symbol c.
    inline node_type c_to_leaf(value_type c)const {
        return m_c_to_leaf[c];
    }
    //! Return the root node of the tree.
    inline static node_type root() {
        return 0;
    }

    //! Return the number of nodes in the tree.
    uint64_t size() const {
        return m_nodes.size();
    }

    //! Return the parent node of v.
    inline node_type parent(node_type v)const {
        return m_nodes[v].parent;
    }
    //! Return left (i=0) or right (i=1) child node of v.
    inline node_type child(node_type v, uint8_t i)const {
        return m_nodes[v].child[i];
    }

    //! Return if v is a leaf node.
    inline bool is_leaf(node_type v)const {
        return m_nodes[v].child[0] == undef;
    }

    //! Return the path as left/right bit sequence in a uint64_t
    inline uint64_t bit_path(value_type c)const {
        return m_path[c];
    }

    //! Return the start of the node in the WT's bit vector
    inline uint64_t bv_pos(node_type v)const {
        return m_nodes[v].bv_pos;
    }

    //! Returns for node v the rank of 1's up to bv_pos(v)
    inline uint64_t bv_pos_rank(node_type v)const {
        return m_nodes[v].bv_pos_rank;
    }

    //! Return if the node is a valid node
    inline bool is_valid(node_type v)const {
        return v != undef;
    }

    //! Return symbol c or the next larger symbol in the wt
    inline std::pair<bool,value_type> symbol_gte(value_type c) const
    {
        for(uint32_t i=c;i<fixed_sigma;i++) {
            if(m_c_to_leaf[i]!=undef) {
                return {true,i};
            }
        }
        return {false,0};
    }

    //! Return symbol c or the next smaller symbol in the wt
    inline std::pair<bool,value_type> symbol_lte(value_type c) const
    {
        for(uint32_t i=c;i>0;i--) {
            if(m_c_to_leaf[i]!=undef) {
                return {true,i};
            }
        }
        if(m_c_to_leaf[0]!=undef)
            return {true,0};
        return {false,0};
    }
};

// Strategy class for tree representation of a WT
template<bool t_dfs_shape=false>
struct byte_tree {
    template<class t_wt>
    using type = _byte_tree<t_dfs_shape, t_wt>;
};

// Strategy class for tree representation of a WT
template<bool t_dfs_shape, class t_wt>
struct _int_tree {
    using alphabet_category = int_alphabet_tag;
    using value_type = uint64_t;
    using node_type = uint64_t; // node is represented by index in m_nodes
    using data_node = _node<_int_tree>;
    enum :uint64_t {undef = 0xFFFFFFFFFFFFFFFFULL}; // max uint64_t value
    enum :uint8_t {int_width = 0};                 // width of the input integers is variable



    std::vector<data_node> m_nodes;     // nodes for the prefix code tree structure
    std::vector<node_type> m_c_to_leaf; // map symbol c to a leaf in the tree structure
    // if m_c_to_leaf[c] == undef the char does
    // not exists in the text
    std::vector<uint64_t>  m_path;      // path information for each char; the bits at position
    // 0..55 hold path information; bits 56..63 the length
    // of the path in binary representation

    void copy(const _int_tree& bt) {
        m_nodes     = bt.m_nodes;
        m_c_to_leaf = bt.m_c_to_leaf;
        m_path      = bt.m_path;
    }

    _int_tree() {}

    _int_tree(const std::vector<pc_node>& temp_nodes, uint64_t& bv_size, const t_wt*) {
        m_nodes.resize(temp_nodes.size());
        m_nodes[0] = temp_nodes.back(); // insert root at index 0
        bv_size = 0;
        size_t node_cnt = 1;
        node_type last_parent = undef;
        std::deque<node_type> q;
        q.push_back(0);
        uint64_t max_c = 0;
        while (!q.empty()) {
            node_type idx;
            if (!t_dfs_shape) {
                idx = q.front(); q.pop_front();
            } else {
                idx = q.back(); q.pop_back();
            }
            // frq_sum is store in bv_pos value
            uint64_t frq = m_nodes[idx].bv_pos;
            m_nodes[idx].bv_pos = bv_size;
            if (m_nodes[idx].child[0] != undef) { // if node is not a leaf
                bv_size += frq;               // add frequency
            } else if (max_c < m_nodes[idx].bv_pos_rank) { // node is leaf and contains large symbol
                max_c = m_nodes[idx].bv_pos_rank;
            }
            if (idx > 0) { // node is not the root
                if (last_parent != m_nodes[idx].parent)
                    m_nodes[m_nodes[idx].parent].child[0] = idx;
                else
                    m_nodes[m_nodes[idx].parent].child[1] = idx;
                last_parent = m_nodes[idx].parent;
            }
            if (m_nodes[idx].child[0] != undef) { // if node is not a leaf
                for (uint32_t k=0; k<2; ++k) {       // add children to tree
                    m_nodes[node_cnt] = temp_nodes[ m_nodes[idx].child[k] ];
                    m_nodes[node_cnt].parent = idx;
                    q.push_back(node_cnt);
                    m_nodes[idx].child[k] = node_cnt++;
                }
            }
        }
        // initialize m_c_to_leaf
        // if c is not in the alphabet m_c_to_leaf[c] = undef
        m_c_to_leaf.resize(max_c+1, undef);
        for (node_type v=0; v < m_nodes.size(); ++v) {
            if (m_nodes[v].child[0] == undef) {              // if node is a leaf
                uint64_t c = m_nodes[v].bv_pos_rank;
                m_c_to_leaf[c] = v; // calculate value
                if (c > max_c) max_c = c;
            }
        }
        m_path = std::vector<uint64_t>(m_c_to_leaf.size(), 0);
        // initialize path information
        // Note: In the case of a bfs search order,
        // we can classify nodes as right child and left child with an easy criterion:
        //   node is a left child, if node%2==1
        //   node is a right child, if node%2==0
        for (value_type c=0, prev_c=0; c < m_c_to_leaf.size(); ++c) {
            if (m_c_to_leaf[c] != undef) { // if char exists in the alphabet
                node_type v = m_c_to_leaf[c];
                uint64_t w = 0; // path
                uint64_t l = 0; // path len
                while (v != root()) {   // while node is not the root
                    w <<= 1;
                    if (m_nodes[m_nodes[v].parent].child[1] == v) // if the node is a right child
                        w |= 1ULL;
                    ++l;
                    v = m_nodes[v].parent; // go up the tree
                }
                if (l > 56) {
                    throw std::logic_error("Code depth greater than 56!!!");
                }
                m_path[c] = w | (l << 56);
                prev_c = c;
            } else {
                uint64_t pl = 0; // len is  0, good for special case in rank
                m_path[c] = prev_c | (pl << 56);
            }
        }
    }

    template<class t_rank_type>
    void init_node_ranks(const t_rank_type& rank) {
        for (uint64_t i=0; i<m_nodes.size(); ++i) {
            if (m_nodes[i].child[0] != undef)  // if node is not a leaf
                m_nodes[i].bv_pos_rank = rank.rank(m_nodes[i].bv_pos);
        }
    }

    _int_tree(const _int_tree& bt) {
        copy(bt);
    }

    void swap(_int_tree& bt) {
        std::swap(m_nodes, bt.m_nodes);
        std::swap(m_c_to_leaf, bt.m_c_to_leaf);
        std::swap(m_path, bt.m_path);
    }

    _int_tree& operator=(const _int_tree& bt) {
        if (this != &bt) {
            copy(bt);
        }
        return *this;
    }

    //! Serializes the data structure into the given ostream
    uint64_t serialize(std::ostream& out, structure_tree_node* v=nullptr,
                       std::string name="") const {
        structure_tree_node* child = structure_tree::add_child(
                                         v, name, util::class_name(*this));
        uint64_t written_bytes = 0;
        uint64_t m_nodes_size = m_nodes.size();
        written_bytes += write_member(m_nodes_size, out, child, "m_nodes.size()");
        written_bytes += serialize_vector(m_nodes, out, child, "m_nodes");
        uint64_t m_c_to_leaf_size = m_c_to_leaf.size();
        written_bytes += write_member(m_c_to_leaf_size, out, child, "m_c_to_leaf.size()");
        written_bytes += serialize_vector(m_c_to_leaf, out, child, "m_c_to_leaf");
        uint64_t m_path_size = m_path.size();
        written_bytes += write_member(m_path_size, out, child, "m_path.size()");
        written_bytes += serialize_vector(m_path, out, child, "m_path");
        structure_tree::add_size(child, written_bytes);
        return written_bytes;
    }

    //! Loads the data structure from the given istream.
    void load(std::istream& in) {
        uint64_t m_nodes_size = 0;
        read_member(m_nodes_size, in);
        m_nodes = std::vector<data_node>(m_nodes_size);
        load_vector(m_nodes, in);
        uint64_t m_c_to_leaf_size = 0;
        read_member(m_c_to_leaf_size, in);
        m_c_to_leaf = std::vector<node_type>(m_c_to_leaf_size);
        load_vector(m_c_to_leaf, in);
        uint64_t m_path_size = 0;
        read_member(m_path_size, in);
        m_path = std::vector<uint64_t>(m_path_size);
        load_vector(m_path, in);
    }

    //! Get corresponding leaf for symbol c.
    inline node_type c_to_leaf(value_type c)const {
        if (c >= m_c_to_leaf.size())
            return undef;
        else
            return m_c_to_leaf[c];
    }
    //! Return the root node of the tree.
    inline static node_type root() {
        return 0;
    }

    //! Return the number of nodes in the tree.
    uint64_t size() const {
        return m_nodes.size();
    }

    //! Return the parent node of v.
    inline node_type parent(node_type v)const {
        return m_nodes[v].parent;
    }
    //! Return left (i=0) or right (i=1) child node of v.
    inline node_type child(node_type v, uint8_t i)const {
        return m_nodes[v].child[i];
    }

    //! Return if v is a leaf node.
    inline bool is_leaf(node_type v)const {
        return m_nodes[v].child[0] == undef;
    }

    //! Return the path as left/right bit sequence in a uint64_t
    inline uint64_t bit_path(value_type c)const {
        if (c >= m_path.size()) {
            return m_path.size()-1;
        }
        return m_path[c];
    }

    //! Return the start of the node in the WT's bit vector
    inline uint64_t bv_pos(node_type v)const {
        return m_nodes[v].bv_pos;
    }

    //! Returns for node v the rank of 1's up to bv_pos(v)
    inline uint64_t bv_pos_rank(node_type v)const {
        return m_nodes[v].bv_pos_rank;
    }

    //! Return if the node is a valid node
    inline bool is_valid(node_type v)const {
        return v != undef;
    }

    //! Return symbol c or the next larger symbol in the wt
    inline std::pair<bool,value_type> symbol_gte(value_type c) const
    {
        if(c >= m_c_to_leaf.size()) {
            return {false,0};
        }
        for(value_type i=c;i<m_c_to_leaf.size();i++) {
            if(m_c_to_leaf[i]!=undef) {
                return {true,i};
            }
        }
        return {false,0};
    }

    //! Return symbol c or the next smaller symbol in the wt
    inline std::pair<bool,value_type> symbol_lte(value_type c) const
    {
        if(c >= m_c_to_leaf.size()) {
            // return the largest symbol
            c = m_c_to_leaf.size()-1;
        }
        for(value_type i=c;i>0;i--) {
            if(m_c_to_leaf[i]!=undef) {
                return {true,i};
            }
        }
        if(m_c_to_leaf[0]!=undef)
            return {true,0};
        return {false,0};
    }

};

// Strategy class for tree representation of a WT
template<bool t_dfs_shape=false>
struct int_tree {
    template<class t_wt>
    using type = _int_tree<t_dfs_shape, t_wt>;
};

} // end namespace sdsl
#endif