This file is indexed.

/usr/include/sdsl/suffix_array_helper.hpp is in libsdsl-dev 2.0.3-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
/* sdsl - succinct data structures library
    Copyright (C) 2010 Simon Gog

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program.  If not, see http://www.gnu.org/licenses/ .
*/
/*! \file suffix_array_helper.hpp
    \brief suffix_array_helper.hpp contains some helper classes for CSTs
	\author Simon Gog
*/
#ifndef INCLUDED_SDSL_SUFFIX_ARRAY_HELPER
#define INCLUDED_SDSL_SUFFIX_ARRAY_HELPER

#include <stdint.h>
#include <cstdlib>
#include <cassert>
#include "iterators.hpp"

namespace sdsl
{

//! Get the symbol at position i in the first row of the sorted suffixes of CSA
/*
 * \param i   Position in the first row.
 * \param csa CSA
 * \par Time complexity
 *    \f$ \Order{\log \sigma} \f$
 *  TODO: add hinted binary search? Two way binary search?
*/
template <class t_csa>
typename t_csa::char_type first_row_symbol(const typename t_csa::size_type i, const t_csa& csa)
{
    assert(i < csa.size());
    if (csa.sigma < 16) { //<- if sigma is small search linear
        typename t_csa::size_type res=1;
        while (res < csa.sigma and csa.C[res] <= i)
            ++res;
        return csa.comp2char[res-1];
    } else {
        // binary search the character with C
        typename t_csa::size_type upper_c = csa.sigma, lower_c = 0; // lower_c inclusive, upper_c exclusive
        typename t_csa::size_type res=0;
        do {
            res = (upper_c+lower_c)/2;
            if (i < csa.C[res]) {
                upper_c = res;
            } else if (i >= csa.C[res+1]) {
                lower_c = res+1;
            }
        } while (i < csa.C[res] or i >= csa.C[res+1]);  // i is not in the interval
        return csa.comp2char[res];
    }

}

// psi[] trait
template<class t_csa, bool t_direction>
struct traverse_csa_psi_trait {
    typedef typename t_csa::value_type value_type;
    typedef typename t_csa::size_type size_type;
    static value_type access(const t_csa& csa,size_type i) {
        return csa.psi[i];
    }
};

// lf[] trait
template<class t_csa>
struct traverse_csa_psi_trait<t_csa,false> {
    typedef typename t_csa::value_type value_type;
    typedef typename t_csa::size_type size_type;
    static value_type access(const t_csa& csa,size_type i) {
        // TODO: in case of a very sparse sampling of SA it may be faster to
        //  use \sigma binary searches on PSI function to determine the
        // LF values.
        return csa.isa[(csa[i]+csa.size()-1) % csa.size()];
    }
};

template<class t_csa,bool t_direction>
class traverse_csa_psi
{
    public:
        typedef typename t_csa::value_type                           value_type;
        typedef typename t_csa::size_type                             size_type;
        typedef typename t_csa::difference_type                 difference_type;
        typedef random_access_const_iterator<traverse_csa_psi>   const_iterator;

    private:
        const t_csa& m_csa;
    public:
        //! Constructor
        traverse_csa_psi(const t_csa& csa_psi) : m_csa(csa_psi) { }
        //! Copy constructor
        traverse_csa_psi(const traverse_csa_psi& tcsa) : m_csa(tcsa.m_csa) { }

        //! Calculate the \f$\Psi\f$ or \f$\LF\f$ value at position i.
        /*! \param i The index for which the \f$\Psi\f$ or \f$\LF\f$ value should be calculated, \f$i\in [0..size()-1]\f$.
         */
        value_type operator[](size_type i)const {
            assert(i < size());
            return traverse_csa_psi_trait<t_csa,t_direction>::access(m_csa,i);
        }

        //! Returns the size of the \f$\Psi\f$ function.
        size_type size() const {
            return m_csa.size();
        }

        //! Returns if the \f$\Psi\f$ function is empty.
        size_type empty() const {
            return m_csa.empty();
        }

        const_iterator begin()const {
            return const_iterator(this, 0);
        }

        //! Returns a const_iterator to the element after the last element.
        /*! Required for the STL Container Concept.
         *  \sa begin.
         */
        const_iterator end()const {
            return const_iterator(this, size());
        }
};

// psi[] trait
template<class t_csa,bool t_direction>
struct traverse_csa_saisa_trait {
    typedef typename t_csa::value_type value_type;
    typedef typename t_csa::size_type size_type;
    static value_type access(const t_csa& csa,size_type i) {
        // \f$\Psi[i] = SA^{-1}[SA[i]+1 \mod n]\f$, where \f$n\f$ is the length of the suffix array SA
        return csa.isa[(csa[i]+1) %  csa.size() ];
    }
};

// lf[] trait
template<class t_csa>
struct traverse_csa_saisa_trait<t_csa,false> {
    typedef typename t_csa::value_type value_type;
    typedef typename t_csa::size_type size_type;
    static value_type access(const t_csa& csa,size_type i) {
        // TODO: in case of a very sparse sampling of SA it may be faster to
        //  use \sigma binary searches on PSI function to determine the
        // LF values.
        return csa.isa[(csa[i]+csa.size()-1) % csa.size()];
    }
};

//! A helper class for the \f$\Psi\f$ function for (compressed) suffix arrays which provide also the inverse suffix array values (like sdsl::csa_bitcompressed).
template<class t_csa,bool t_direction>
class traverse_csa_saisa
{
    public:
        typedef typename t_csa::value_type value_type;
        typedef typename t_csa::size_type size_type;
        typedef typename t_csa::difference_type	difference_type;
        typedef random_access_const_iterator<traverse_csa_saisa> const_iterator;// STL Container requirement
    private:
        const t_csa& m_csa;
    public:
        //! Constructor
        traverse_csa_saisa(const t_csa& csa) : m_csa(csa) {}

        // Copy constructor
        traverse_csa_saisa(const traverse_csa_saisa& tcsa) : m_csa(tcsa.m_csa) {}

        //! Calculate the \f$\Psi\f$ value at position i.
        /*!	\param i The index for which the \f$\Psi\f$ value should be calculated, \f$i\in [0..size()-1]\f$.
         *	\par Time complexity
         *		\f$ \Order{\saaccess+\isaaccess} \f$
        */
        value_type operator[](size_type i)const {
            assert(i<size());
            return traverse_csa_saisa_trait<t_csa,t_direction>::access(m_csa,i);
        }

        //! Returns the size of the \f$\Psi\f$ function.
        size_type size()const {
            return m_csa.size();
        }

        //! Returns if the \f$\Psi\f$ function is empty.
        size_type empty()const {
            return m_csa,empty();
        }

        //! Returns a const_iterator to the first element.
        /*! Required for the STL Container Concept.
         *  \sa end
         */
        const_iterator begin()const {
            return const_iterator(this, 0);
        }

        //! Returns a const_iterator to the element after the last element.
        /*! Required for the STL Container Concept.
         *  \sa begin.
         */
        const_iterator end()const {
            return const_iterator(this, size());
        }
};

//! A wrapper for the bwt of a compressed suffix array that is based on the \f$\psi\f$ function.
template<class t_csa>
class bwt_of_csa_psi
{
    public:
        typedef typename t_csa::char_type value_type;
        typedef typename t_csa::size_type size_type;
        typedef typename t_csa::char_type char_type;
        typedef typename t_csa::difference_type difference_type;
        typedef random_access_const_iterator<bwt_of_csa_psi> const_iterator;
    private:
        const t_csa& m_csa; //<- pointer to the (compressed) suffix array that is based on the \f$\Psi\f$ function.
    public:

        //! Constructor
        bwt_of_csa_psi(const t_csa& csa) : m_csa(csa) { }

        //! Calculate the Burrows Wheeler Transform (BWT) at position i.
        /*!	\param i The index for which the BWT value should be calculated, \f$i\in [0..size()-1]\f$.
         *	\par Time complexity
         *		\f$ \Order{\log |\Sigma|} \f$
         */
        value_type operator[](size_type i)const {
            assert(i < size());
            size_type pos = m_csa.lf[i];
            return first_row_symbol(pos,m_csa);
        }

        //! Calculates how many symbols c are in the prefix [0..i-1]
        /*!
         *  \param i The exclusive index of the prefix range [0..i-1], so \f$i\in [0..size()]\f$.
         *  \param c The symbol to count the occurrences in the prefix.
         *    \returns The number of occurrences of symbol c in the prefix [0..i-1].
         *  \par Time complexity
         *        \f$ \Order{\log n t_{\Psi}} \f$
         */
        size_type rank(size_type i, const char_type c)const {
            return m_csa.rank_bwt(i,c);
        }

        //! Calculates the position of the i-th c.
        /*!
         *  \param i The i-th occurrence. \f$i\in [1..rank(size(),c)]\f$.
         *  \param c Symbol c.
         *    \returns The position of the i-th c or size() if c does occur less then i times.
         *  \par Time complexity
         *        \f$ \Order{t_{\Psi}} \f$
         */
        size_type select(size_type i, const char_type c)const {
            return m_csa.select_bwt(i, c);
        }

        //! Returns the size of the \f$\Psi\f$ function.
        size_type size()const {
            return m_csa.size();
        }

        //! Returns if the bwt is empty.
        size_type empty()const {
            return m_csa.empty();
        }

        //! Returns a const_iterator to the first element.
        /*! Required for the STL Container Concept.
         *  \sa end
         */
        const_iterator begin()const {
            return const_iterator(this, 0);
        }

        //! Returns a const_iterator to the element after the last element.
        /*! Required for the STL Container Concept.
         *  \sa begin.
         */
        const_iterator end()const {
            return const_iterator(this, size());
        }
};

// psi[] trait
template<class t_csa,bool t_direction>
struct traverse_csa_wt_traits {
    typedef typename t_csa::value_type value_type;
    typedef typename t_csa::char_type char_type;
    typedef typename t_csa::size_type size_type;
    static value_type access(const t_csa& csa,size_type i) {
        char_type c = csa.F[i];
        return csa.wavelet_tree.select(i - csa.C[csa.char2comp[c]] + 1 , c);
    }
};

// lf[] trait
template<class t_csa>
struct traverse_csa_wt_traits<t_csa,false> {
    typedef typename t_csa::value_type value_type;
    typedef typename t_csa::char_type char_type;
    typedef typename t_csa::size_type size_type;
    static value_type access(const t_csa& csa,size_type i) {
        typename t_csa::char_type c;
        auto rc = csa.wavelet_tree.inverse_select(i);
        size_type j = rc.first;
        c = rc.second;
        return csa.C[ csa.char2comp[c] ] + j;
    }
};


//! A wrapper class for the \f$\Psi\f$ and LF function for (compressed) suffix arrays that are based on a wavelet tree (like sdsl::csa_wt).
template<class t_csa,bool t_direction>
class traverse_csa_wt
{
    public:
        typedef typename t_csa::value_type value_type;
        typedef typename t_csa::size_type size_type;
        typedef typename t_csa::char_type char_type;
        typedef typename t_csa::difference_type difference_type;
        typedef random_access_const_iterator<traverse_csa_wt> const_iterator;
    private:
        const t_csa& m_csa; //<- pointer to the (compressed) suffix array that is based on a wavelet tree
        traverse_csa_wt() {};    // disable default constructor
    public:
        //! Constructor
        traverse_csa_wt(const t_csa& csa_wt) : m_csa(csa_wt) {}
        //! Calculate the \f$\Psi\f$ value at position i.
        /*!	\param i The index for which the \f$\Psi\f$ value should be calculated, \f$i\in [0..size()-1]\f$.
         *	\par Time complexity
         *		\f$ \Order{\log |\Sigma|} \f$
         */
        value_type operator[](size_type i) const {
            assert(i < m_csa.size());
            return traverse_csa_wt_traits<t_csa,t_direction>::access(m_csa,i);
        }

        //! Returns the size of the \f$\Psi\f$ function.
        size_type size()const {
            return m_csa.size();
        }
        //! Returns if the \f$\Psi\f$ function is empty.
        size_type empty()const {
            return m_csa.empty();
        }
        //! Returns a const_iterator to the first element.
        const_iterator begin()const {
            return const_iterator(this, 0);
        }
        //! Returns a const_iterator to the element after the last element.
        const_iterator end()const {
            return const_iterator(this, size());
        }
};

template<class t_csa>
class bwt_of_csa_wt
{
    public:
        typedef const typename t_csa::char_type value_type;
        typedef typename t_csa::size_type size_type;
        typedef typename t_csa::char_type char_type;
        typedef typename t_csa::difference_type difference_type;
        typedef random_access_const_iterator<bwt_of_csa_wt> const_iterator;
    private:
        const t_csa& m_csa; //<- pointer to the (compressed) suffix array that is based on a wavelet tree
        bwt_of_csa_wt() {};    // disable default constructor
    public:
        //! Constructor
        bwt_of_csa_wt(const t_csa& csa_wt) : m_csa(csa_wt) {}
        //! Calculate the Burrows Wheeler Transform (BWT) at position i.
        /*!	\param i The index for which the \f$\Psi\f$ value should be calculated, \f$i\in [0..size()-1]\f$.
         *	\par Time complexity
         *		\f$ \Order{\log |\Sigma|} \f$
         */
        value_type operator[](size_type i)const {
            assert(i < size());
            return m_csa.wavelet_tree[i];
        }
        //! Returns the size of the BWT function.
        size_type size()const {
            return m_csa.size();
        }

        //! Calculates how many symbols c are in the prefix [0..i-1].
        /*!
         *  \param i The exclusive index of the prefix range [0..i-1], so \f$i\in [0..size()]\f$.
         *  \param c The symbol to count the occurrences in the prefix.
         *    \returns The number of occurrences of symbol c in the prefix [0..i-1].
         *  \par Time complexity
         *        \f$ \Order{\log |\Sigma|} \f$
         */
        size_type rank(size_type i, const char_type c)const {
            return m_csa.rank_bwt(i, c);
        }

        //! Calculates the position of the i-th c.
        /*!
         *  \param i The i-th occurrence. \f$i\in [1..rank(size(),c)]\f$.
         *  \param c Symbol c.
         *    \returns The position of the i-th c or size() if c does occur less then i times.
         *  \par Time complexity
         *        \f$ \Order{t_{\Psi}} \f$
         */
        size_type select(size_type i, const char_type c)const {
            return m_csa.select(i, c);
        }


        //! Returns if the BWT function is empty.
        size_type empty()const {
            return m_csa.empty();
        }
        //! Returns a const_iterator to the first element.
        const_iterator begin()const {
            return const_iterator(this, 0);
        }
        //! Returns a const_iterator to the element after the last element.
        const_iterator end()const {
            return const_iterator(this, size());
        }
};

template<class t_csa>
class isa_of_csa_wt
{
    public:
        typedef typename t_csa::value_type value_type;
        typedef typename t_csa::size_type size_type;
        typedef typename t_csa::difference_type difference_type;
        typedef random_access_const_iterator<isa_of_csa_wt> const_iterator;
    private:
        const t_csa& m_csa; //<- pointer to the (compressed) suffix array that is based on a wavelet tree
        isa_of_csa_wt() {};    // disable default constructor
    public:
        //! Constructor
        isa_of_csa_wt(const t_csa& csa_wt) : m_csa(csa_wt) {}
        //! Calculate the Burrows Wheeler Transform (BWT) at position i.
        /*! \param i The index for which the \f$\Psi\f$ value should be calculated, \f$i\in [0..size()-1]\f$.
         *  \par Time complexity
         *      \f$ \Order{\log |\Sigma|} \f$
         */
        value_type operator[](size_type i)const {
            assert(i < size());
            size_type ii;
            // get the leftmost sampled isa value to the right of i
            value_type result = m_csa.isa_sample[ ii = ((i+m_csa.isa_sample_dens-1)/m_csa.isa_sample_dens) ];
            ii *= m_csa.isa_sample_dens;
            if (ii >= m_csa.size()) {
                i = m_csa.size() - 1 - i;
            } else {
                i = ii - i;
            }
            while (i--) {
                result = m_csa.lf[result];
            }
            return result;
        }
        //! Returns the size of the BWT function.
        size_type size()const {
            return m_csa.size();
        }
        //! Returns if the BWT function is empty.
        size_type empty()const {
            return m_csa.empty();
        }
        //! Returns a const_iterator to the first element.
        const_iterator begin()const {
            return const_iterator(this, 0);
        }
        //! Returns a const_iterator to the element after the last element.
        const_iterator end()const {
            return const_iterator(this, size());
        }
};

template<class t_csa>
class isa_of_csa_psi
{
    public:
        typedef typename t_csa::value_type value_type;
        typedef typename t_csa::size_type size_type;
        typedef typename t_csa::difference_type difference_type;
        typedef random_access_const_iterator<isa_of_csa_psi> const_iterator;
    private:
        const t_csa& m_csa; //<- pointer to the (compressed) suffix array that is based on a wavelet tree
        isa_of_csa_psi() {};    // disable default constructor
    public:
        //! Constructor
        isa_of_csa_psi(const t_csa& csa_wt) : m_csa(csa_wt) {}
        //! Calculate the Burrows Wheeler Transform (BWT) at position i.
        /*! \param i The index for which the \f$\Psi\f$ value should be calculated, \f$i\in [0..size()-1]\f$.
         *  \par Time complexity
         *      \f$ \Order{\log |\Sigma|} \f$
         */
        value_type operator[](size_type i)const {
            assert(i < size());
            // get the rightmost sampled isa value
            value_type result = m_csa.isa_sample[i/m_csa.isa_sample_dens];
            i = i % m_csa.isa_sample_dens;
            while (i--) {
                result = m_csa.psi[result];
            }
            return result;
        }
        //! Returns the size of the BWT function.
        size_type size()const {
            return m_csa.size();
        }
        //! Returns if the BWT function is empty.
        size_type empty()const {
            return m_csa.empty();
        }
        //! Returns a const_iterator to the first element.
        const_iterator begin()const {
            return const_iterator(this, 0);
        }
        //! Returns a const_iterator to the element after the last element.
        const_iterator end()const {
            return const_iterator(this, size());
        }
};

template<class t_csa>
class first_row_of_csa
{
    public:
        typedef const typename t_csa::char_type value_type;
        typedef typename t_csa::size_type size_type;
        typedef typename t_csa::difference_type difference_type;
        typedef random_access_const_iterator<first_row_of_csa> const_iterator;
    private:
        const t_csa& m_csa;
    public:
        //! Constructor
        first_row_of_csa(const t_csa& csa) : m_csa(csa) {}
        //! Calculate F[i]
        /*! \param i The index for which the \f$\F\f$ value should be calculated, \f$i\in [0..size()-1]\f$.
         *  \par Time complexity
         *      \f$ \Order{\log |\Sigma|} \f$
         */
        value_type operator[](size_type i)const {
            assert(i < size());
            return first_row_symbol(i,m_csa);
        }
        //! Returns the size of the F column.
        size_type size()const {
            return m_csa.size();
        }
        //! Returns if the F column is empty.
        size_type empty()const {
            return m_csa.empty();
        }
        //! Returns a const_iterator to the first element.
        const_iterator begin()const {
            return const_iterator(this, 0);
        }
        //! Returns a const_iterator to the element after the last element.
        const_iterator end()const {
            return const_iterator(this, size());
        }
};


template<class t_csa>
class text_of_csa
{
    public:
        typedef typename t_csa::char_type value_type;
        typedef typename t_csa::size_type size_type;
        typedef typename t_csa::difference_type difference_type;
        typedef random_access_const_iterator<text_of_csa> const_iterator;
    private:
        const t_csa& m_csa;
        text_of_csa() {}
    public:

        //! Constructor
        text_of_csa(const t_csa& csa) : m_csa(csa) { }

        //! Character at index \f$i\f$ of the original text.
        /*!	\param i Text position , \f$i\in [0..size()-1]\f$.
         *	\par Time complexity
         *		\f$ t_{ISA} \log\sigma \f$
         */
        value_type operator[](size_type i)const {
            assert(i < size());
            return first_row_symbol(m_csa.isa[i],m_csa);
        }

        //! Returns the size of the original text.
        size_type size()const {
            return m_csa.size();
        }

        //! Returns if text text has size 0.
        size_type empty()const {
            return m_csa.empty();
        }

        //! Returns a const_iterator to the first element.
        /*! Required for the STL Container Concept.
         *  \sa end
         */
        const_iterator begin()const {
            return const_iterator(this, 0);
        }

        //! Returns a const_iterator to the element after the last element.
        /*! Required for the STL Container Concept.
         *  \sa begin.
         */
        const_iterator end()const {
            return const_iterator(this, size());
        }
};

template<class t_csa, uint8_t int_width>
void set_isa_samples(int_vector_buffer<int_width>& sa_buf, typename t_csa::isa_sample_type& isa_sample)
{
    typedef typename t_csa::size_type size_type;
    auto n = sa_buf.size();
    isa_sample.width(bits::hi(n)+1);
    if (n >= 1) { // so n+t_csa::isa_sample_dens >= 2
        isa_sample.resize((n-1+t_csa::isa_sample_dens-1)/t_csa::isa_sample_dens + 1);
    }
    util::set_to_value(isa_sample, 0);

    for (size_type i=0; i < n; ++i) {
        size_type sa = sa_buf[i];
        if ((sa % t_csa::isa_sample_dens) == 0) {
            isa_sample[sa/t_csa::isa_sample_dens] = i;
        } else if (sa+1 == n) {
            isa_sample[(sa+t_csa::isa_sample_dens-1)/t_csa::isa_sample_dens] = i;
        }
    }
}


}

#endif