This file is indexed.

/usr/include/sdsl/rrr_helper.hpp is in libsdsl-dev 2.0.3-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
/* sdsl - succinct data structures library
    Copyright (C) 2011-2013 Simon Gog

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program.  If not, see http://www.gnu.org/licenses/ .
*/
/*! \file rrr_helper.hpp
   \brief rrr_helper.hpp contains the sdsl::binomial struct,
          a struct which contains informations about the binomial coefficients
   \author Simon Gog, Matthias Petri, Stefan Arnold
*/
#ifndef SDSL_RRR_HELPER
#define SDSL_RRR_HELPER

#ifdef RRR_NO_OPT
#ifndef RRR_NO_BS
#define RRR_NO_BS
#endif
#endif

#include <algorithm> // for next permutation
#include <iostream>
#include "bits.hpp"
#include "uint128_t.hpp"
#include "uint256_t.hpp"

namespace sdsl
{

//! Trait struct for the binomial coefficient struct to handle different type of integers.
/*! This generic implementation works for 64-bit integers.
 */
template<uint16_t log_n>
struct binomial_coefficients_trait {
    typedef uint64_t number_type;
    static inline uint16_t hi(number_type x) {
        return bits::hi(x);
    }

    //! Read a \f$len\f$-bit integer of type number_type from a bitvector.
    /*!
     * \param bv   A bit_vector of int_vector from which we extract the integer.
     * \param pos  Position of the least significant bit of the integer which should be read.
     * \param len  bit-width of the integer which should be read.
     * \return The len-bit integer.
     */
    template<class bit_vector_type>
    static inline number_type get_int(const bit_vector_type& bv,
                                      typename bit_vector_type::size_type pos,
                                      uint16_t len) {
        return bv.get_int(pos, len);
    }

    //! Write a \f$len\f$-bit integer x of type number_type to a bitvector.
    /*!
     * \param bv     A bit_vecor or int_vector in which we write the integer.
     * \param pos    Position of the least significant bit of the integer which should be written.
     * \param x    The integer x which should be written.
     * \param len  Bit-width of x.
     */
    template<class bit_vector_type>
    static void set_int(bit_vector_type& bv, typename bit_vector_type::size_type pos,
                        number_type x, uint16_t len) {
        bv.set_int(pos, x, len);
    }

    //! Count the number of set bits in x.
    /*!
     *  \param x The integer x.
     */
    static inline uint16_t popcount(number_type x) {
        return bits::cnt(x);
    }
};

//! Specialization of binomial_coefficients_trait for 128-bit integers.
template<>
struct binomial_coefficients_trait<7> {
    typedef uint128_t number_type;
    static inline uint16_t hi(number_type x) {
        if ((x >> 64)) {
            return bits::hi(x >> 64) + 64;
        } else {
            return bits::hi(x);
        }
    }

    template<class bit_vector_type>
    static inline number_type get_int(const bit_vector_type& bv,
                                      typename bit_vector_type::size_type pos,
                                      uint16_t len) {
        if (len <= 64) {
            return bv.get_int(pos, len);
        } else {
            return ((((number_type) bv.get_int(pos+64, len-64))<<64) + bv.get_int(pos, 64));
        }
    }

    template<class bit_vector_type>
    static void set_int(bit_vector_type& bv,
                        typename bit_vector_type::size_type pos,
                        number_type x, uint16_t len) {
        if (len <= 64) {
            bv.set_int(pos, x, len);
        } else {
            bv.set_int(pos, (uint64_t)x, 64); bv.set_int(pos+64, x>>64, len-64);
        }
    }

    static inline uint16_t popcount(number_type x) {
        return bits::cnt(x >> 64) + bits::cnt(x);
    }
};

//! Specialization of binomial_coefficients_trait for 256-bit integers.
template<>
struct binomial_coefficients_trait<8> {
    typedef uint256_t number_type;
    static inline uint16_t hi(number_type x) {
        return x.hi();
    }

    template<class bit_vector_type>
    static inline number_type get_int(const bit_vector_type& bv,
                                      typename bit_vector_type::size_type pos,
                                      uint16_t len) {
        if (len <= 64) {
            return number_type(bv.get_int(pos, len));
        } else if (len <= 128) {
            return number_type(bv.get_int(pos, 64), bv.get_int(pos+64, len-64));
        } else if (len <= 192) {
            return number_type(bv.get_int(pos, 64), bv.get_int(pos + 64, 64),
                               (uint128_t)bv.get_int(pos + 128, len-128));
        } else { // > 192
            return number_type(bv.get_int(pos, 64), bv.get_int(pos+64, 64),
                               (((uint128_t)bv.get_int(pos+192, len-192))<<64) | bv.get_int(pos+128, 64));
        }
    }

    template<class bit_vector_type>
    static void set_int(bit_vector_type& bv,
                        typename bit_vector_type::size_type pos,
                        number_type x,
                        uint16_t len) {
        if (len <= 64) {
            bv.set_int(pos, x, len);
        } else if (len <= 128) {
            bv.set_int(pos, x, 64); bv.set_int(pos+64, x>>64, len-64);
        } else if (len <= 192) {
            bv.set_int(pos, x, 64); bv.set_int(pos+64, x>>64, 64);
            bv.set_int(pos+128, x>>128, len-128);
        } else { // > 192
            bv.set_int(pos, x, 64); bv.set_int(pos+64, x>>64, 64);
            bv.set_int(pos+128, x>>128, 64); bv.set_int(pos+192, x>>192, len-192);
        }
    }

    static inline uint16_t popcount(number_type x) {
        return x.popcount();
    }
};

template<uint16_t n, class number_type>
struct binomial_table {
    static struct impl {
        number_type table[n+1][n+1];
        number_type L1Mask[n+1]; // L1Mask[i] contains a word with the i least significant bits set to 1.
        // i.e. L1Mask[0] = 0, L1Mask[1] = 1,...
        number_type O1Mask[n]; // O1Mask[i] contains a word with the i least significant bits set to 0.

        impl() {
            for (uint16_t k=0; k <= n; ++k) {
                table[k][k] = 1;    // initialize diagonal
            }
            for (uint16_t k=0; k <= n; ++k) {
                table[0][k] = 0;    // initialize first row
            }
            for (uint16_t nn=0; nn <= n; ++nn) {
                table[nn][0] = 1;    // initialize first column
            }
            for (int nn=1; nn<=n; ++nn) {
                for (int k=1; k<=n; ++k) {
                    table[nn][k] = table[nn-1][k-1] + table[nn-1][k];
                }
            }
            L1Mask[0] = 0;
            number_type mask = 1;
            O1Mask[0] = 1;
            for (int i=1; i<=n; ++i) {
                L1Mask[i] = mask;
                if (i < n)
                    O1Mask[i] = O1Mask[i-1]<<1;
                mask = (mask << 1);
                mask |= (number_type)1;
            }
        }
    } data;
};

template<uint16_t n, class number_type>
typename binomial_table<n,number_type>::impl binomial_table<n,number_type>::data;

//! A struct for the binomial coefficients \f$ n \choose k \f$.
/*!
 * data.table[m][k] contains the number \f${m \choose k}\f$ for \f$ k\leq m\leq \leq n\f$.
 * Size of data.table :
 *   Let \f$ maxlog = \lceil \log n \rceil \f$ and \f$ maxsize = 2^{maxlog} \f$
 *   then the tables requires \f$ maxsize^2\times \lceil n/8 rceil \f$ bytes space.
 *    Examples:
 *          n <=  64: 64*64*8 bytes    =   4 kB *  8 = 32 kB
 *     64 < n <= 128: 128*128*16 bytes =  16 kB * 16 = 256 kB
 *    128 < n <= 256: 256*256*32 bytes =  64 kB * 32 = 2048 kB = 2 MB
 *  The table is shared now for all n's in on of these ranges.
 *
 * data.space[k] returns the bits needed to encode a value between [0..data.table[n][k]], given n and k.
 * Size of data.space is  \f$ (n+1) \times \lceil n/8 \rceil \f$ bytes. E.g. 64*8=512 bytes for n=63,
 * 2kB for n=127, and 8kB for n=255.
 *
 * BINARY_SEARCH_THRESHOLD is equal to \f$ n/\lceil\log{n+1}\rceil \f$
 * \pre The template parameter n should be in the range [7..256].
 */
template<uint16_t n>
struct binomial_coefficients {
    enum {MAX_LOG = (n>128 ? 8 : (n > 64 ? 7 : 6))};
    static const uint16_t MAX_SIZE = (1 << MAX_LOG);
    typedef binomial_coefficients_trait<MAX_LOG> trait;
    typedef typename trait::number_type number_type;
    typedef binomial_table<MAX_SIZE,number_type> tBinom;

    static struct impl {
        const number_type(&table)[MAX_SIZE+1][MAX_SIZE+1] = tBinom::data.table;  // table for the binomial coefficients
        uint16_t space[n+1];    // for entry i,j \lceil \log( {i \choose j}+1 ) \rceil
#ifndef RRR_NO_BS
        static const uint16_t BINARY_SEARCH_THRESHOLD = n/MAX_LOG;
#else
        static const uint16_t BINARY_SEARCH_THRESHOLD = 0;
#endif
        number_type(&L1Mask)[MAX_SIZE+1] = tBinom::data.L1Mask;
        number_type(&O1Mask)[MAX_SIZE] = tBinom::data.O1Mask;

        impl() {
            static typename binomial_table<n,number_type>::impl tmp_data;
            for (int k=0; k<=n; ++k) {
                space[k] = (tmp_data.table[n][k] == (number_type)1) ? 0 : trait::hi(tmp_data.table[n][k]) + 1;
            }
        }
    } data;
};

template<uint16_t n>
typename binomial_coefficients<n>::impl binomial_coefficients<n>::data;

//! Class to encode and decode binomial coefficients on the fly.
/*!
 * The basic encoding and decoding process is described in
 * Gonzalo Navarro and Eliana Providel: Fast, Small, Simple Rank/Select on Bitmaps, SEA 2012
 *
 * Implemented optimizations in the decoding process:
 *   - Constant time handling for uniform blocks (only zeros or ones in the block)
 *   - Constant time handling for blocks contains only a single one bit.
 *   - Decode blocks with at most \f$ k<n\log(n) \f$ by a binary search for the ones.
 *   - For operations decode_popcount, decode_select, and decode_bit a block
 *     is only decoded as long as the query is not answered yet.
 */
template<uint16_t n>
struct rrr_helper {
    typedef binomial_coefficients<n> binomial; //!< The struct containing the binomial coefficients
    typedef typename binomial::number_type number_type; //!< The used number type, e.g. uint64_t, uint128_t,...
    typedef typename binomial::trait trait; //!< The number trait

    //! Returns the space usage in bits of the binary representation of the number \f${n \choose k}\f$
    static inline uint16_t space_for_bt(uint16_t i) {
        return binomial::data.space[i];
    }

    template<class bit_vector_type>
    static inline number_type decode_btnr(const bit_vector_type& bv,
                                          typename bit_vector_type::size_type btnrp, uint16_t btnrlen) {
        return trait::get_int(bv, btnrp, btnrlen);
    }

    template<class bit_vector_type>
    static void set_bt(bit_vector_type& bv, typename bit_vector_type::size_type pos,
                       number_type bt, uint16_t space_for_bt) {
        trait::set_int(bv, pos, bt, space_for_bt);
    }

    template<class bit_vector_type>
    static inline uint16_t get_bt(const bit_vector_type& bv, typename bit_vector_type::size_type pos,
                                  uint16_t block_size) {
        return trait::popcount(trait::get_int(bv, pos, block_size));
    }

    static inline number_type bin_to_nr(number_type bin) {
        if (bin == (number_type)0 or bin == binomial::data.L1Mask[n]) {  // handle special case
            return 0;
        }
        number_type nr = 0;
        uint16_t  k  = trait::popcount(bin);
        uint16_t  nn = n; // size of the block
        while (bin != (number_type)0) {
            if (1ULL & bin) {
                nr += binomial::data.table[nn-1][k];
                --k; // go to the case (n-1, k-1)
            }// else go to the case (n-1, k)
            bin = (bin >> 1);
            --nn;
        }
        return nr;
    }

    //! Decode the bit at position \f$ off \f$ of the block encoded by the pair (k, nr).
    static inline bool decode_bit(uint16_t k, number_type nr, uint16_t off) {
#ifndef RRR_NO_OPT
        if (k == n) {  // if n==k, then the encoded block consists only of ones
            return 1;
        } else if (k == 0) { // if k==0 then the encoded block consists only of zeros
            return 0;
        } else if (k == 1) { // if k==1 then the encoded block contains exactly on set bit at
            return (n-nr-1) == off; // position n-nr-1
        }
#endif
        uint16_t nn = n;
        // if k < n \log n, it is better to do a binary search for each of the on bits
        if (k+1 < binomial::data.BINARY_SEARCH_THRESHOLD+1) {
            while (k > 1) {
                uint16_t nn_lb = k, nn_rb = nn+1; // invariant nr >= binomial::data.table[nn_lb-1][k]
                while (nn_lb < nn_rb) {
                    uint16_t nn_mid = (nn_lb + nn_rb) / 2;
                    if (nr >= binomial::data.table[nn_mid-1][k]) {
                        nn_lb = nn_mid+1;
                    } else {
                        nn_rb = nn_mid;
                    }
                }
                nn = nn_lb-1;
                if (n-nn >= off) {
                    return (n-nn) == off;
                }
                nr -= binomial::data.table[nn-1][k];
                --k;
                --nn;
            }
        } else { // else do a linear decoding
            int i = 0;
            while (k > 1) {
                if (i > off) {
                    return 0;
                }
                if (nr >= binomial::data.table[nn-1][k]) {
                    nr -= binomial::data.table[nn-1][k];
                    --k;
                    if (i == off)
                        return 1;
                }
                --nn;
                ++i;
            }
        }
        return (n-nr-1) == off;
    }

    //! Decode the len-bit integer starting at position \f$ off \f$ of the block encoded by the pair (k, nr).
    static inline uint64_t decode_int(uint16_t k, number_type nr, uint16_t off, uint16_t len) {
#ifndef RRR_NO_OPT
        if (k == n) {  // if n==k, then the encoded block consists only of ones
            return bits::lo_set[len];
        } else if (k == 0) { // if k==0 then the encoded block consists only of zeros
            return 0;
        } else if (k == 1) { // if k==1 then the encoded block contains exactly on set bit at
            if (n-nr-1 >= (number_type)off and n-nr-1 <= (number_type)(off+len-1)) {
                return 1ULL << ((n-nr-1)-off);
            } else
                return 0;
        }
#endif
        uint64_t res = 0;
        uint16_t nn = n;
        int i = 0;
        while (k > 1) {
            if (i > off+len-1) {
                return res;
            }
            if (nr >= binomial::data.table[nn-1][k]) {
                nr -= binomial::data.table[nn-1][k];
                --k;
                if (i >= off)
                    res |= 1ULL << (i-off);
            }
            --nn;
            ++i;
        }
        if (n-nr-1 >= (number_type)off and n-nr-1 <= (number_type)(off+len-1)) {
            res |= 1ULL << ((n-nr-1)-off);
        }
        return res;
    }


    //! Decode the first off bits bits of the block encoded by the pair (k, nr) and return the set bits.
    static inline uint16_t decode_popcount(uint16_t k, number_type nr, uint16_t off) {
#ifndef RRR_NO_OPT
        if (k == n) {  // if n==k, then the encoded block consists only of ones
            return off;   // i.e. the answer is off
        } else if (k == 0) { // if k==0, then the encoded block consists only on zeros
            return 0;    // i.e. the result is zero
        } else if (k == 1) { // if k==1 then the encoded block contains exactly on set bit at
            return (n-nr-1) < off; // position n-nr-1, and popcount is 1 if off > (n-nr-1).
        }
#endif
        uint16_t result = 0;
        uint16_t nn = n;
        // if k < n \log n, it is better to do a binary search for each of the on bits
        if (k+1 < binomial::data.BINARY_SEARCH_THRESHOLD+1) {
            while (k > 1) {
                uint16_t nn_lb = k, nn_rb = nn+1; // invariant nr >= binomial::data.table[nn_lb-1][k]
                while (nn_lb < nn_rb) {
                    uint16_t nn_mid = (nn_lb + nn_rb) / 2;
                    if (nr >= binomial::data.table[nn_mid-1][k]) {
                        nn_lb = nn_mid+1;
                    } else {
                        nn_rb = nn_mid;
                    }
                }
                nn = nn_lb-1;
                if (n-nn >= off) {
                    return result;
                }
                ++result;
                nr -= binomial::data.table[nn-1][k];
                --k;
                --nn;
            }
        } else {
            int i = 0;
            while (k > 1) {
                if (i >= off) {
                    return result;
                }
                if (nr >= binomial::data.table[nn-1][k]) {
                    nr -= binomial::data.table[nn-1][k];
                    --k;
                    ++result;
                }
                --nn;
                ++i;
            }
        }
        return result + ((n-nr-1) < off);
    }

    /*! \pre k >= sel, sel>0
     */
    static inline uint16_t decode_select(uint16_t k, number_type& nr, uint16_t sel) {
#ifndef RRR_NO_OPT
        if (k == n) {  // if n==k, then the encoded block consists only of ones
            return sel-1;
        } else if (k == 1 and sel == 1) {
            return n-nr-1;
        }
#endif
        uint16_t nn = n;
        // if k < n \log n, it is better to do a binary search for each of the on bits
        if (sel+1 < binomial::data.BINARY_SEARCH_THRESHOLD+1) {
            while (sel > 0) {
                uint16_t nn_lb = k, nn_rb = nn+1; // invariant nr >= iii.m_coefficients[nn_lb-1]
                while (nn_lb < nn_rb) {
                    uint16_t nn_mid = (nn_lb + nn_rb) / 2;
                    if (nr >= binomial::data.table[nn_mid-1][k]) {
                        nn_lb = nn_mid+1;
                    } else {
                        nn_rb = nn_mid;
                    }
                }
                nn = nn_lb-1;
                nr -= binomial::data.table[nn-1][k];
                --sel;
                --nn;
                --k;
            }
            return n-nn-1;
        } else {
            int i = 0;
            while (sel > 0) {   // TODO: this condition only work if the precondition holds
                if (nr >= binomial::data.table[nn-1][k]) {
                    nr -= binomial::data.table[nn-1][k];
                    --sel;
                    --k;
                }
                --nn;
                ++i;
            }
            return i-1;
        }
    }

    /*! \pre k >= sel, sel>0
     */
    template<uint8_t pattern, uint8_t len>
    static inline uint16_t decode_select_bitpattern(uint16_t k, number_type& nr, uint16_t sel) {
        int i = 0;
        uint8_t decoded_pattern = 0;
        uint8_t decoded_len     = 0;
        uint16_t nn = n;
        while (sel > 0) {   // TODO: this condition only work if the precondition holds
            decoded_pattern = decoded_pattern<<1;
            ++decoded_len;
            if (nr >= binomial::data.table[nn-1][k]) {
                nr -= binomial::data.table[nn-1][k];
                // a one is decoded
                decoded_pattern |= 1; // add to the pattern
                --k;
            }
            --nn;
            ++i;
            if (decoded_len == len) {  // if decoded pattern length equals len of the searched pattern
                if (decoded_pattern == pattern) {  // and pattern equals the searched pattern
                    --sel;
                }
                decoded_pattern = 0; decoded_len = 0; // reset pattern
            }
        }
        return i-len; // return the starting position of $sel$th occurence of the pattern
    }

};

} // end namespace
#endif