This file is indexed.

/usr/include/sdsl/rmq_succinct_sct.hpp is in libsdsl-dev 2.0.3-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
/* sdsl - succinct data structures library
    Copyright (C) 2009 Simon Gog

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program.  If not, see http://www.gnu.org/licenses/ .
*/
/*! \file rmq_succinct_sct.hpp
    \brief rmq_succinct_sct.hpp contains the class rmq_succinct_sct which supports range minimum or range maximum queries on a random access container in constant time and \f$2 n+o(n) bits\f$ space.
    \author Simon Gog
*/
#ifndef INCLUDED_SDSL_RMQ_SUCCINCT_SCT
#define INCLUDED_SDSL_RMQ_SUCCINCT_SCT

#include "rmq_support.hpp"
#include "int_vector.hpp"
#include "bp_support_sada.hpp"
#include "suffix_tree_helper.hpp"
#include "util.hpp"

//! Namespace for the succinct data structure library.
namespace sdsl
{

template<bool t_min = true,
         class t_bp_support = bp_support_sada<256,32,rank_support_v5<> > >
class rmq_succinct_sct;

template<class t_bp_support = bp_support_sada<256,32,rank_support_v5<> > >
struct range_maximum_sct {
    typedef rmq_succinct_sct<false, t_bp_support> type;
};

//! A class to support range minimum or range maximum queries on a random access container.
/*!
 *  \tparam t_min        Specifies whether the data structure should answer range min/max queries (mimumum=true)
 *  \tparam t_bp_support Type of Support structure for the BPS-SCT.
 *
 * \par Time complexity
 *        \f$ \Order{1} \f$ for the range minimum/maximum queries if the balanced parentheses support structure supports constant time operations.
 * \par Space complexity:
 *        \f$ \Order{2n}+o(n) \f$ bits for the data structure ( \f$ n=size() \f$ ).
 */
template<bool t_min, class t_bp_support>
class rmq_succinct_sct
{
        bit_vector    m_sct_bp;         //!< A bit vector which contains the BPS-SCT of the input container.
        t_bp_support  m_sct_bp_support; //!< Support structure for the BPS-SCT

        void copy(const rmq_succinct_sct& rm) {
            m_sct_bp = rm.m_sct_bp;
            m_sct_bp_support = rm.m_sct_bp_support;
            m_sct_bp_support.set_vector(&m_sct_bp);
        }

    public:
        typedef typename bit_vector::size_type size_type;
        typedef typename bit_vector::size_type value_type;
        typedef t_bp_support                   bp_support_type;

        const bit_vector&      sct_bp         = m_sct_bp;
        const bp_support_type& sct_bp_support = m_sct_bp_support;

        //! Default constructor
        rmq_succinct_sct() {}

        //! Constructor
        /*! \tparam t_rac A random access container.
         *  \param  v     Pointer to container object.
         */
        template<class t_rac>
        rmq_succinct_sct(const t_rac* v=nullptr) {
            if (v != nullptr) {
#ifdef RMQ_SCT_BUILD_BP_NOT_SUCCINCT
                // this method takes \f$n\log n\f$ bits extra space in the worst case
                construct_supercartesian_tree_bp(*v, m_sct_bp, t_min);
#else
                // this method takes only \f$n\f$ bits extra space in all cases
                m_sct_bp = construct_supercartesian_tree_bp_succinct(*v, t_min);
                //  TODO: constructor which uses int_vector_buffer
#endif
                m_sct_bp_support = bp_support_type(&m_sct_bp);
            }
        }

        //! Copy constructor
        rmq_succinct_sct(const rmq_succinct_sct& rm) {
            *this = rm;
        }

        //! Move constructor
        rmq_succinct_sct(rmq_succinct_sct&& rm) {
            *this = std::move(rm);
        }

        rmq_succinct_sct& operator=(const rmq_succinct_sct& rm) {
            if (this != &rm) {
                m_sct_bp = rm.m_sct_bp;
                m_sct_bp_support = rm.m_sct_bp_support;
                m_sct_bp_support.set_vector(&m_sct_bp);
            }
            return *this;
        }

        rmq_succinct_sct& operator=(rmq_succinct_sct&& rm) {
            if (this != &rm) {
                m_sct_bp = std::move(rm.m_sct_bp);
                m_sct_bp_support = std::move(rm.m_sct_bp_support);
                m_sct_bp_support.set_vector(&m_sct_bp);
            }
            return *this;
        }

        void swap(rmq_succinct_sct& rm) {
            m_sct_bp.swap(rm.m_sct_bp);
            util::swap_support(m_sct_bp_support, rm.m_sct_bp_support,
                               &m_sct_bp, &(rm.m_sct_bp));
        }

        //! Range minimum/maximum query for the supported random access container v.
        /*!
         * \param l Leftmost position of the interval \f$[\ell..r]\f$.
         * \param r Rightmost position of the interval \f$[\ell..r]\f$.
         * \return The minimal index i with \f$\ell \leq i \leq r\f$ for which \f$ v[i] \f$ is minimal/maximal.
         * \pre
         *   - r < size()
         *   - \f$ \ell \leq r \f$
         * \par Time complexity
         *      \f$ \Order{1} \f$
         */
        size_type operator()(const size_type l, const size_type r)const {
            assert(l <= r); assert(r < size());
            if (l==r)
                return l;
            size_type i    = m_sct_bp_support.select(l+1);
            size_type j    = m_sct_bp_support.select(r+1);
            size_type fc_i = m_sct_bp_support.find_close(i);
            if (j < fc_i) { // i < j < find_close(j) < find_close(i)
                return l;
            } else { // if i < find_close(i) < j < find_close(j)
                size_type ec = m_sct_bp_support.rr_enclose(i,j);
                if (ec == m_sct_bp_support.size()) {// no restricted enclosing pair found
                    return r;
                } else { // found range restricted enclosing pair
                    return m_sct_bp_support.rank(ec)-1; // subtract 1, as the index is 0 based
                }
            }
        }

        size_type size()const {
            return m_sct_bp.size()/2;
        }

        size_type serialize(std::ostream& out, structure_tree_node* v=nullptr, std::string name="")const {
            structure_tree_node* child = structure_tree::add_child(v, name, util::class_name(*this));
            size_type written_bytes = 0;
            written_bytes += m_sct_bp.serialize(out, child, "sct_bp");
            written_bytes += m_sct_bp_support.serialize(out, child, "sct_bp_support");
            structure_tree::add_size(child, written_bytes);
            return written_bytes;
        }

        void load(std::istream& in) {
            m_sct_bp.load(in);
            m_sct_bp_support.load(in, &m_sct_bp);
        }
};

} // end namespace sdsl
#endif