This file is indexed.

/usr/include/sdsl/nn_dict_dynamic.hpp is in libsdsl-dev 2.0.3-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
/* sdsl - succinct data structures library
    Copyright (C) 2011 Timo Beller, Simon Gog

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program.  If not, see http://www.gnu.org/licenses/ .
*/
/*! \file nn_dict_dynamic.hpp
    \brief nn_dict_dynamic.hpp contains a class for a dynamic bit vector which also supports the prev and next operations
	\author Timo Beller, Simon Gog
*/

#ifndef INCLUDED_NN_DICT_DYNAMIC
#define INCLUDED_NN_DICT_DYNAMIC

#include <sdsl/int_vector.hpp>
#include <sdsl/util.hpp>

namespace sdsl
{

class nn_dict_dynamic; // forward declaration

namespace util
{
void set_zero_bits(nn_dict_dynamic& nn);
}


// possible TODO: resize(size_type size)

//! A class for a dynamic bit vector which also supports the prev and next operations
class nn_dict_dynamic
{
    public:
        typedef int_vector<64>::size_type 				size_type;
        class reference; // forward declaration of inner class

        friend class reference;
        friend void util::set_zero_bits(nn_dict_dynamic& nn);
    private:
        uint64_t m_depth;				// Depth of the tree (1 level corresonds to 0, 2 levels corresponds to 1,...)
        uint64_t m_v_begin_leaves;		// Virtual begin of leaves
        size_type m_size;
        int_vector<64> m_offset;	 	// Number of nodes to skip on each level
        int_vector<64> m_tree; 			// Tree

        void copy(const nn_dict_dynamic& nn) {
            m_depth = nn.m_depth;
            m_v_begin_leaves = nn.m_v_begin_leaves;
            m_size = nn.m_size;
            m_offset = nn.m_offset;
            m_tree = nn.m_tree;
        }

    public:

        const uint64_t& depth;

        size_type size()const {
            return m_size;
        }

        //! Constructor
        /*! \param n Number of supported bits
         */
        nn_dict_dynamic(const uint64_t n = 0):depth(m_depth) {
            m_size = n;
            if (n == 0)
                return;
            uint64_t level;				// level indicator
            uint64_t nodes = 1;			// number of nodes (=64 bit integer)
            uint64_t tmp;				// tmp-variable

            /* Calc depth and begin of leaves */
            m_depth = bits::hi(n)/6; // if, n>0 calculate  \f$ \lfloor log_64(n) \rfloor \f$
            m_v_begin_leaves = (1ULL<<(m_depth*6))/63;

            /* Calc how many nodes to skip on each level */
            m_offset = int_vector<64>(m_depth+2, 0);
            level = m_depth;
            tmp = n;
            while (level) {
                tmp = (tmp+63)/64;  // get real number of nodes, of the next higher level
                //                  <number of nodes in the full tree>  - <real number of nodes>
                m_offset[level+1] = (1ULL<<(6*level))                   - tmp;
                nodes += tmp;
                --level;
            }

            /* Calc how many nodes to skip up to each level*/
            for (level = 1; level <= m_depth; ++level) {
                m_offset[level] += m_offset[level-1];
            }

            /* Create Tree incl. leaves */
            m_tree = int_vector<64>(nodes);
        }

        //! Copy constructor
        nn_dict_dynamic(const nn_dict_dynamic& nn):depth(m_depth) {
            copy(nn);
        }

        //! move constructor
        nn_dict_dynamic(nn_dict_dynamic&& nn):depth(m_depth) {
            *this = std::move(nn);
        }

        //! Assignment operator
        nn_dict_dynamic& operator=(const nn_dict_dynamic& nn) {
            if (this != &nn) {
                copy(nn);
            }
            return *this;
        }

        //! Assignment move operator
        nn_dict_dynamic& operator=(nn_dict_dynamic&& nn) {
            if (this != &nn) {
                m_depth = std::move(nn.m_depth);
                m_v_begin_leaves = std::move(nn.m_v_begin_leaves);
                m_size = std::move(nn.m_size);
                m_offset = std::move(nn.m_offset);
                m_tree = std::move(nn.m_tree);
                // set nn to default-constructor state
                nn.m_size = 0;
                nn.m_depth = 0;
                nn.m_v_begin_leaves = 0;
            }
            return *this;
        }

        void swap(nn_dict_dynamic& nn) {
            if (this != &nn) {
                std::swap(m_depth, nn.m_depth);
                std::swap(m_v_begin_leaves, nn.m_v_begin_leaves);
                std::swap(m_size, nn.m_size);
                m_offset.swap(nn.m_offset);
                m_tree.swap(nn.m_tree);
            }
        }

        //! Access the bit at index idx
        /*! \param idx Index
         *  \par Precondition
         *    \f$ 0 \leq  idx < size() \f$
         */
        bool operator[](const size_type& idx)const {
            uint64_t node = m_tree[(m_v_begin_leaves + (idx>>6)) - m_offset[m_depth] ];
            return (node >> (idx&0x3F)) & 1;
        }

        inline reference operator[](const size_type& idx) {
            return reference(this, idx);
        }


        //! Get the leftmost index \f$i\geq idx\f$ where a bit is set.
        /*! \param idx Left border of the search interval. \f$ 0\leq idx < size()\f$
         *
         *  \return If there exists a leftmost index \f$i\geq idx\f$ where a bit is set,
         *          then \f$i\f$ is returned, otherwise size().
         */
        size_type next(const size_type idx)const {
            uint64_t v_node_position; 	// virtual node position
            uint64_t node; 				// current node
            uint64_t depth = m_depth;	// current depth of node
            uint64_t position; 			// position of the 1-bit

            v_node_position = m_v_begin_leaves + (idx>>6);
            uint8_t off = idx & 0x3F; // mod 64

            // Go up until a 1-bit is found
            node = m_tree[ v_node_position-m_offset[depth] ]>>off;
            while (!node or off==64) {
                // Not in the root
                if (v_node_position) {
                    --depth;
                    --v_node_position;
                    off = (v_node_position&0x3F)+1;
                    v_node_position >>= 6;
                    node = m_tree[ v_node_position-m_offset[depth] ]>>off;
                } else {
                    return size();
                }
            }
            // Calculate the position of the 1-bit
            position = bits::lo(node)+off;

            // Go down to the leaf
            while (v_node_position < m_v_begin_leaves) {
                ++depth;
                v_node_position = (v_node_position<<6) + 1 + position;
                node = m_tree[ v_node_position-m_offset[depth] ];

                // Calculate the position of the 1-bit
                position = bits::lo(node);
            }
            return ((v_node_position - m_v_begin_leaves)<<6) + position;
        }

        //! Get the rightmost index \f$i \leq idx\f$ where a bit is set.
        /*! \param idx Right border of the search interval. \f$ 0 \leq idx < size()\f$
         *
         *  \return If there exists a rightmost index \f$i \leq idx\f$ where a bit is set,
         *          then \f$i\f$ is returned, otherwise size().
         */
        size_type prev(const size_type idx)const {
            uint64_t v_node_position; 	// virtual node position
            uint64_t node; 				// current node
            uint64_t depth = m_depth;	// current depth of node
            uint64_t position; 			// position of the 1-bit

            v_node_position = m_v_begin_leaves + (idx>>6);
            uint8_t off = idx & 0x3F; // mod 64

            // Go up until a 1-bit is found
            node = m_tree[ v_node_position-m_offset[depth] ]<<(63-off);
            while (!node or off == (uint8_t)-1) {

                // Not in the root
                if (v_node_position) {
                    --depth;
                    --v_node_position;

                    off = ((uint8_t)(v_node_position&0x3F))-1;
                    v_node_position >>= 6;

                    node = m_tree[ v_node_position-m_offset[depth] ]<<(63-off);
                } else {
                    return size();
                }
            }
            // Calculate the position of the 1-bit
            position = bits::hi(node)-(63-off);

            // Go down to the leaf
            while (v_node_position < m_v_begin_leaves) {
                ++depth;
                v_node_position = (v_node_position<<6) + 1 + position;
                node = m_tree[ v_node_position-m_offset[depth] ];

                // Calculate the position of the 1-bit
                position = bits::hi(node); //-(63-off)
            }
            return ((v_node_position - m_v_begin_leaves)<<6) + position;
        }


        //! Load the data structure
        void load(std::istream& in) {
            read_member(m_depth, in);
            read_member(m_v_begin_leaves, in);
            read_member(m_size, in);
            m_offset.load(in);
            m_tree.load(in);
        }

        //! Serialize the data structure
        size_type serialize(std::ostream& out, structure_tree_node* v=nullptr, std::string name="")const {
            structure_tree_node* child = structure_tree::add_child(v, name, util::class_name(*this));
            size_type written_bytes = 0;
            written_bytes += write_member(m_depth, out, child, "depth");
            written_bytes += write_member(m_v_begin_leaves, out, child, "v_begin_leaves");
            written_bytes += write_member(m_size, out, child, "size");
            written_bytes += m_offset.serialize(out, child, "offset");
            written_bytes += m_tree.serialize(out, child, "tree");
            structure_tree::add_size(child, written_bytes);
            return written_bytes;
        }

        class reference
        {
            private:
                nn_dict_dynamic* m_pbv;  // pointer to the bit_vector_nearest_neigbour
                size_type m_idx; 	// virtual node position
            public:
                //! Constructor
                reference(nn_dict_dynamic* pbv,
                          nn_dict_dynamic::size_type idx):m_pbv(pbv),m_idx(idx) {};

                //! Assignment operator for the proxy class
                reference& operator=(bool x) {
                    uint64_t v_node_position; 	// virtual node position
                    uint64_t r_node_position; 	// real    node position
                    uint64_t depth = m_pbv->m_depth;	// current depth of node

                    v_node_position = m_pbv->m_v_begin_leaves + (m_idx>>6);
                    uint8_t offset = m_idx & 0x3F; // pos mod 64
                    if (x) {
                        while (true) {
                            r_node_position = v_node_position - m_pbv->m_offset[depth];
                            uint64_t w = m_pbv->m_tree[r_node_position];
                            if ((w>>offset) & 1) { // if the bit was already set
                                return *this;
                            } else {
                                m_pbv->m_tree[r_node_position] |= (1ULL<<offset); // set bit
                                if (!w and depth) { // go up in the tree
                                    --depth; --v_node_position;
                                    offset = v_node_position&0x3F;
                                    v_node_position >>= 6;
                                } else {
                                    return *this;
                                }
                            }
                        }
                    } else {
                        while (true) {
                            r_node_position = v_node_position - m_pbv->m_offset[depth];
                            uint64_t w = m_pbv->m_tree[r_node_position];
                            if (!((w>>offset) & 1)) { // if the bit is already 0
                                return *this;
                            } else {
                                m_pbv->m_tree[r_node_position] &= (~(1ULL<<offset)); // unset bit
                                if (!m_pbv->m_tree[r_node_position] and depth) { // go up in the tree
                                    --depth; --v_node_position;
                                    offset = v_node_position&0x3F;
                                    v_node_position >>= 6;
                                } else {
                                    return *this;
                                }
                            }
                        }
                    }
                    return *this;
                }

                reference& operator=(const reference& x) {
                    return *this = bool(x);
                }

                //! Cast the reference to a bool
                operator bool()const {
                    uint64_t node = m_pbv->m_tree[(m_pbv->m_v_begin_leaves + (m_idx>>6)) - m_pbv->m_offset[m_pbv->m_depth] ];
                    return (node >> (m_idx&0x3F)) & 1;
                }

                bool operator==(const reference& x)const {
                    return bool(*this) == bool(x);
                }

                bool operator<(const reference& x)const {
                    return !bool(*this) and bool(x);
                }
        };

};



} // end of namespace

#endif // end file