This file is indexed.

/usr/include/sdsl/dac_vector.hpp is in libsdsl-dev 2.0.3-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
/* sdsl - succinct data structures library
    Copyright (C) 2014 Simon Gog

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program.  If not, see http://www.gnu.org/licenses/ .
*/
/*! \file dac_vector.hpp
   \brief dac_vector.hpp contains a vector which stores the values with variable length codes.
   \author Simon Gog
*/
#ifndef SDSL_DAC_VECTOR
#define SDSL_DAC_VECTOR

#include "int_vector.hpp"
#include "rank_support_v5.hpp"
#include "iterators.hpp"

//! Namespace for the succinct data structure library.
namespace sdsl
{

//! A generic immutable space-saving vector class for unsigned integers.
/*! The values of a dac_vector are immutable after the constructor call.
 *  The ,,escaping'' technique is used to encode values.
 *  This is defined as follows (see [1]):
 *  A k-bit integer is split into \f$K=\lceil k/(b-1)\rceil\f$ bits each and
 *  encoded into \f$K\f$ blocks of \f$ b \f$ bits each. All but the last block
 *  are marked with by a 1 in the most significant bit. Escaping with b=8 is
 *  also known as vbyte-coding (see [2]). A experimental study of using escaping
 *  for the LCP array is given in [3].
 *  \par Time complexity
 *        - \f$\Order{\log n/b}\f$ worst case, where b is the number of bits
          in a block
 *  \par References
 *       [1] F. Transier and P. Sanders: ,,Engineering Basic Search Algorithms
 *           of an In-Memory Text Search Engine'', ACM Transactions on
 *           Information Systems, Vol. 29, No.1, Article 2, 2010
 *       [2] H.E. Williams and J. Zobel: ,,Compressing integers for fast file
 *           access'', Computing Journal Vol 43, No.3, 1999
 *       [3] N. Brisboa, S. Ladra, G. Navarro: ,,Directly addressable variable-
 *           length codes'', Proceedings of SPIRE 2009.
 *
 * \tparam t_b    Split block size.
 * \tparam t_rank Rank structure to navigate between the different levels.

 */
template<uint8_t t_b = 4,
         typename t_rank = rank_support_v5<>
         >
class dac_vector
{
    private:
        static_assert(t_b > 0 , "dac_vector: t_b has to be larger than 0");
        static_assert(t_b < 64, "dac_vector: t_b has to be smaller than 64");
    public:
        typedef typename int_vector<>::value_type        value_type;
        typedef random_access_const_iterator<dac_vector> const_iterator;
        typedef const_iterator                           iterator;
        typedef const value_type                         const_reference;
        typedef const_reference                          reference;
        typedef const_reference*                         pointer;
        typedef const pointer                            const_pointer;
        typedef int_vector<>::size_type                  size_type;
        typedef ptrdiff_t                                difference_type;
        typedef t_rank                                   rank_support_type;
        typedef iv_tag                                   index_category;
    private:
        int_vector<t_b>   m_data;           // block data for every level
        bit_vector        m_overflow;       // mark non-end bytes
        rank_support_type m_overflow_rank;  // rank for m_overflow
        int_vector<64>    m_level_pointer_and_rank = int_vector<64>(4,0);
        uint8_t           m_max_level;      // maximum level < (log n)/b+1

        void copy(const dac_vector& v)
        {
            m_data                   = v.m_data;
            m_overflow               = v.m_overflow;
            m_overflow_rank          = v.m_overflow_rank;
            m_overflow_rank.set_vector(&m_overflow);
            m_level_pointer_and_rank = v.m_level_pointer_and_rank;
            m_max_level              = v.m_max_level;
        }

    public:
        dac_vector() = default;

        dac_vector(const dac_vector& v)
        {
            copy(v);
        }

        dac_vector(dac_vector&& v)
        {
            *this = std::move(v);
        }
        dac_vector& operator=(const dac_vector& v)
        {
            if (this != &v) {
                copy(v);
            }
            return *this;
        }

        dac_vector& operator=(dac_vector&& v)
        {
            if (this != &v) {
                m_data                   = std::move(v.m_data);
                m_overflow               = std::move(v.m_overflow);
                m_overflow_rank          = std::move(v.m_overflow_rank);
                m_overflow_rank.set_vector(&m_overflow);
                m_level_pointer_and_rank = std::move(v.m_level_pointer_and_rank);
                m_max_level              = std::move(v.m_max_level);
            }
            return *this;
        }

        //! Constructor for a Container of unsigned integers.
        /*! \param c A container of unsigned integers.
            \pre No two adjacent values should be equal.
          */
        template<class Container>
        dac_vector(const Container& c);

        //! Constructor for an int_vector_buffer of unsigned integers.
        template<uint8_t int_width>
        dac_vector(int_vector_buffer<int_width>& v_buf);

        //! The number of elements in the dac_vector.
        size_type size()const
        {
            return m_level_pointer_and_rank[2];
        }
        //! Return the largest size that this container can ever have.
        static size_type max_size()
        {
            return int_vector<>::max_size()/2;
        }

        //!    Returns if the dac_vector is empty.
        bool empty() const
        {
            return 0 == m_level_pointer_and_rank[2];
        }

        //! Swap method for dac_vector
        void swap(dac_vector& v)
        {
            m_data.swap(v.m_data);
            m_overflow.swap(v.m_overflow);
            util::swap_support(m_overflow_rank, v.m_overflow_rank,
                               &m_overflow, &(v.m_overflow));

            m_level_pointer_and_rank.swap(v.m_level_pointer_and_rank);
            std::swap(m_max_level, v.m_max_level);
        }

        //! Iterator that points to the first element of the dac_vector.
        const const_iterator begin()const
        {
            return const_iterator(this, 0);
        }


        //! Iterator that points to the position after the last element of the dac_vector.
        const const_iterator end()const
        {
            return const_iterator(this, size());
        }

        //! []-operator
        value_type operator[](size_type i)const
        {
            uint8_t level = 1;
            uint8_t offset = t_b;
            size_type result = m_data[i];
            const uint64_t* p = m_level_pointer_and_rank.data();
            uint64_t ppi = (*p)+i;
            while (level < m_max_level and m_overflow[ppi]) {
                p += 2;
                ppi = *p + (m_overflow_rank(ppi) - *(p-1));
                result |= (m_data[ppi] << (offset));
                ++level;
                offset += t_b;
            }
            return result;
        }

        //! Serializes the dac_vector to a stream.
        size_type serialize(std::ostream& out, structure_tree_node* v=nullptr, std::string name="")const;

        //! Load from a stream.
        void load(std::istream& in)
        {
            m_data.load(in);
            m_overflow.load(in);
            m_overflow_rank.load(in, &m_overflow);
            m_level_pointer_and_rank.load(in);
            read_member(m_max_level, in);
        }
};

template<uint8_t t_b, typename t_rank>
template<class Container>
dac_vector<t_b, t_rank>::dac_vector(const Container& c)
{
//  (1) Count for each level, how many blocks are needed for the representation
//      Running time: \f$ O(n \times \frac{\log n}{b}  \f$
//      Result is sorted in m_level_pointer_and_rank
    size_type n = c.size(), val=0;
    if (n == 0)
        return;
// initialize counter
    m_level_pointer_and_rank = int_vector<64>(128, 0);
    m_level_pointer_and_rank[0] = n; // level 0 has n entries

    uint8_t level_x_2 = 0;
    uint8_t max_level_x_2 = 4;
    for (size_type i=0; i < n; ++i) {
        val=c[i];
        val >>= t_b; // shift value b bits to the right
        level_x_2 = 2;
        while (val) {
            // increase counter for current level by 1
            ++m_level_pointer_and_rank[level_x_2];
            val >>= t_b; // shift value b bits to the right
            level_x_2 += 2; // increase level by 1
            max_level_x_2 = std::max(max_level_x_2, level_x_2);
        }
    }
    m_level_pointer_and_rank.resize(max_level_x_2);
//  (2)    Determine maximum level and prefix sums of level counters
    m_max_level = 0;
    size_type sum_blocks = 0, last_block_size=0;
    for (size_type i=0, t=0; i < m_level_pointer_and_rank.size(); i+=2) {
        t = sum_blocks;
        sum_blocks += m_level_pointer_and_rank[i];
        m_level_pointer_and_rank[i] = t;
        if (sum_blocks > t) {
            ++m_max_level;
            last_block_size = sum_blocks - t;
        }
    }
    m_overflow = bit_vector(sum_blocks - last_block_size, 0);
    m_data.resize(sum_blocks);

    assert(last_block_size > 0);

//  (3)    Enter block and overflow data
    int_vector<64> cnt = m_level_pointer_and_rank;
    const uint64_t mask = bits::lo_set[t_b];

    for (size_type i=0, j=0; i < n; ++i) {
        val=c[i];
        j = cnt[0]++;
        m_data[ j ] =  val & mask;
        val >>= t_b; // shift value b bits to the right
        level_x_2 = 2;
        while (val) {
            m_overflow[j] = 1;
            // increase counter for current level by 1
            j = cnt[level_x_2]++;
            m_data[ j ] = val & mask;
            val >>= t_b; // shift value b bits to the right
            level_x_2 += 2; // increase level by 1
        }
    }

//  (4) Initialize rank data structure for m_overflow and precalc rank for
//      pointers
    util::init_support(m_overflow_rank, &m_overflow);
    for (size_type i=0; 2*i < m_level_pointer_and_rank.size() and
         m_level_pointer_and_rank[2*i] < m_overflow.size(); ++i) {
        m_level_pointer_and_rank[2*i+1] = m_overflow_rank(
                                              m_level_pointer_and_rank[2*i]);
    }

}

template<uint8_t t_b, typename t_rank>
template<uint8_t int_width>
dac_vector<t_b, t_rank>::dac_vector(int_vector_buffer<int_width>& v_buf)
{
//  (1) Count for each level, how many blocks are needed for the representation
//      Running time: \f$ O(n \times \frac{\log n}{b}  \f$
//      Result is sorted in m_level_pointer_and_rank
    size_type n = v_buf.size(), val=0;
    if (n == 0)
        return;
// initialize counter
    m_level_pointer_and_rank = int_vector<64>(128, 0);
    m_level_pointer_and_rank[0] = n; // level 0 has n entries

    uint8_t level_x_2 = 0;
    uint8_t max_level_x_2 = 4;
    for (size_type i=0; i < n; ++i) {
        val=v_buf[i];
        val >>= t_b; // shift value b bits to the right
        level_x_2 = 2;
        while (val) {
            // increase counter for current level by 1
            ++m_level_pointer_and_rank[level_x_2];
            val >>= t_b; // shift value b bits to the right
            level_x_2 += 2; // increase level by 1
            max_level_x_2 = std::max(max_level_x_2, level_x_2);
        }
    }
    m_level_pointer_and_rank.resize(max_level_x_2);
//  (2)    Determine maximum level and prefix sums of level counters
    m_max_level = 0;
    size_type sum_blocks = 0, last_block_size=0;
    for (size_type i=0, t=0; i < m_level_pointer_and_rank.size(); i+=2) {
        t = sum_blocks;
        sum_blocks += m_level_pointer_and_rank[i];
        m_level_pointer_and_rank[i] = t;
        if (sum_blocks > t) {
            ++m_max_level;
            last_block_size = sum_blocks - t;
        }
    }
    m_overflow = bit_vector(sum_blocks - last_block_size, 0);
    m_data.resize(sum_blocks);

    assert(last_block_size > 0);

//  (3)    Enter block and overflow data
    int_vector<64> cnt = m_level_pointer_and_rank;
    const uint64_t mask = bits::lo_set[t_b];

    for (size_type i=0, j=0; i < n; ++i) {
        val=v_buf[i];
        j = cnt[0]++;
        m_data[ j ] =  val & mask;
        val >>= t_b; // shift value b bits to the right
        level_x_2 = 2;
        while (val) {
            m_overflow[j] = 1;
            // increase counter for current level by 1
            j = cnt[level_x_2]++;
            m_data[ j ] = val & mask;
            val >>= t_b; // shift value b bits to the right
            level_x_2 += 2; // increase level by 1
        }
    }

//  (4) Initialize rank data structure for m_overflow and precalc rank for
//      pointers
    util::init_support(m_overflow_rank, &m_overflow);
    for (size_type i=0; 2*i < m_level_pointer_and_rank.size() and
         m_level_pointer_and_rank[2*i] < m_overflow.size(); ++i) {
        m_level_pointer_and_rank[2*i+1] = m_overflow_rank(
                                              m_level_pointer_and_rank[2*i]);
    }
}

template<uint8_t t_b, typename t_rank>
dac_vector<>::size_type dac_vector<t_b, t_rank>::serialize(std::ostream& out, structure_tree_node* v, std::string name)const
{
    structure_tree_node* child = structure_tree::add_child(
                                     v, name, util::class_name(*this));
    size_type written_bytes = 0;
    written_bytes += m_data.serialize(out, child, "data");
    written_bytes += m_overflow.serialize(out, child, "overflow");
    written_bytes += m_overflow_rank.serialize(out, child, "overflow_rank");
    written_bytes += m_level_pointer_and_rank.serialize(out,
                     child, "level_pointer_and_rank");
    written_bytes += write_member(m_max_level, out, child, "max_level");
    structure_tree::add_size(child, written_bytes);
    return written_bytes;
}

} // end namespace sdsl
#endif