/usr/include/sdsl/csa_sampling_strategy.hpp is in libsdsl-dev 2.0.3-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 | /* sdsl - succinct data structures library
Copyright (C) 2012 Simon Gog
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses/ .
*/
/*! \file csa_sampling_strategy.hpp
\brief csa_sampling_strategy.hpp includes different strategy classes for suffix array sampling in the CSAs.
\author Simon Gog
*/
#ifndef INCLUDED_CSA_SAMPLING_STRATEGY
#define INCLUDED_CSA_SAMPLING_STRATEGY
/*
* Text = ABCDEFABCDEF$
* 0123456789012
* sa_sample_dens = 2
* *1 SA *2
* * 12 * $
* 06 * ABCDEF$
* * 00 * ABCDEFABCDEF$
* 07 BCDEF$
* * 01 BCDEFABCDEF$
* 08 * CDEF$
* * 02 * CDEFABCDEF$
* 09 DEF$
* * 03 DEFABCDEF$
* 10 * EF$
* * 04 * EFABCDEF$
* 11 F$
* * 05 FABCDEF$
*
* The first sampling (*1) is called suffix order sampling. It has the advantage, that
* we don't need to store a bitvector, which marks the sampled suffixes, since a suffix
* at index \(i\) in the suffix array is marked if \( 0 \equiv i \mod sa_sample_dens \).
*
* The second sampling (*2) is called text order sampling. It is also called regular in [1].
*
* [1] P.Ferragina, J. Siren, R. Venturini: Distribution-Aware Compressed Full-Text Indexes, ESA 2011
*/
#include "int_vector.hpp"
#include "csa_alphabet_strategy.hpp" // for key_trait
#include <set>
namespace sdsl
{
template<class t_csa, uint8_t t_width=0>
class _sa_order_sampling : public int_vector<t_width>
{
public:
typedef int_vector<t_width> base_type;
typedef typename base_type::size_type size_type; // make typedefs of base_type visible
typedef typename base_type::value_type value_type; //
enum { sample_dens = t_csa::sa_sample_dens };
//! Default constructor
_sa_order_sampling() {}
//! Constructor
/*
* \param cconfig Cache configuration (SA is expected to be cached.).
* \param csa Pointer to the corresponding CSA. Not used in this class.
* \par Time complexity
* Linear in the size of the suffix array.
*/
_sa_order_sampling(const cache_config& cconfig, SDSL_UNUSED const t_csa* csa=nullptr) {
int_vector_buffer<> sa_buf(cache_file_name(conf::KEY_SA, cconfig));
size_type n = sa_buf.size();
this->width(bits::hi(n)+1);
this->resize((n+sample_dens-1)/sample_dens);
for (size_type i=0, cnt_mod=sample_dens, cnt_sum=0; i < n; ++i, ++cnt_mod) {
size_type sa = sa_buf[i];
if (sample_dens == cnt_mod) {
cnt_mod = 0;
(*this)[cnt_sum++] = sa;
}
}
}
//! Determine if index i is sampled or not
inline bool is_sampled(size_type i) const {
return 0 == (i % sample_dens);
}
//! Return the suffix array value for the sampled index i
inline value_type sa_value(size_type i) const {
return (*this)[i/sample_dens];
}
};
template<uint8_t t_width=0>
class sa_order_sa_sampling
{
public:
template<class t_csa> // template inner class which is used in CSAs to parametrize the
class type // sampling strategy class with the Sampling density of the CSA
{
public:
typedef _sa_order_sampling<t_csa, t_width> sample_type;
};
};
template<class t_csa,
class bit_vector_type=bit_vector,
class rank_support_type=typename bit_vector_type::rank_1_type,
uint8_t t_width=0
>
class _text_order_sampling : public int_vector<t_width>
{
private:
bit_vector_type m_marked;
rank_support_type m_rank_marked;
public:
typedef int_vector<t_width> base_type;
typedef typename base_type::size_type size_type; // make typedefs of base_type visible
typedef typename base_type::value_type value_type; //
enum { sample_dens = t_csa::sa_sample_dens };
//! Default constructor
_text_order_sampling() {}
//! Constructor
/*
* \param cconfig Cache configuration (SA is expected to be cached.).
* \param csa Pointer to the corresponding CSA. Not used in this class.
* \par Time complexity
* Linear in the size of the suffix array.
*/
_text_order_sampling(const cache_config& cconfig, SDSL_UNUSED const t_csa* csa=nullptr) {
int_vector_buffer<> sa_buf(cache_file_name(conf::KEY_SA, cconfig));
size_type n = sa_buf.size();
bit_vector marked(n, 0); // temporary bitvector for the marked text positions
this->width(bits::hi(n)+1);
this->resize((n+sample_dens-1)/sample_dens);
for (size_type i=0, sa_cnt=0; i < n; ++i) {
size_type sa = sa_buf[i];
if (0 == (sa % sample_dens)) {
marked[i] = 1;
(*this)[sa_cnt++] = sa;
}
}
m_marked = std::move(bit_vector_type(marked));
util::init_support(m_rank_marked, &m_marked);
}
//! Copy constructor
_text_order_sampling(const _text_order_sampling& st) : base_type(st) {
m_marked = st.m_marked;
m_rank_marked = st.m_rank_marked;
m_rank_marked.set_vector(&m_marked);
}
//! Determine if index i is sampled or not
inline bool is_sampled(size_type i) const {
return m_marked[i];
}
//! Return the suffix array value for the sampled index i
inline value_type sa_value(size_type i) const {
return (*this)[m_rank_marked(i)];
}
//! Assignment operation
_text_order_sampling& operator=(const _text_order_sampling& st) {
if (this != &st) {
base_type::operator=(st);
m_marked = st.m_marked;
m_rank_marked = st.m_rank_marked;
m_rank_marked.set_vector(&m_marked);
}
return *this;
}
//! Swap operation
void swap(_text_order_sampling& st) {
base_type::swap(st);
m_marked.swap(st.m_marked);
util::swap_support(m_rank_marked, st.m_rank_marked, &m_marked, &(st.m_marked));
}
size_type serialize(std::ostream& out, structure_tree_node* v, std::string name)const {
structure_tree_node* child = structure_tree::add_child(v, name, util::class_name(*this));
size_type written_bytes = 0;
written_bytes += base_type::serialize(out, child, "samples");
written_bytes += m_marked.serialize(out, child, "marked");
written_bytes += m_rank_marked.serialize(out, child, "rank_marked");
structure_tree::add_size(child, written_bytes);
return written_bytes;
}
void load(std::istream& in) {
base_type::load(in);
m_marked.load(in);
m_rank_marked.load(in);
m_rank_marked.set_vector(&m_marked);
}
};
template<class t_bit_vec=bit_vector, class t_rank_sup=typename t_bit_vec::rank_1_type, uint8_t t_width=0>
class text_order_sa_sampling
{
public:
template<class t_csa> // template inner class which is used in CSAs to parametrize the
class type // sampling strategy class with the Sampling density of the CSA
{
public:
typedef _text_order_sampling<t_csa,
t_bit_vec,
t_rank_sup,
t_width
> sample_type;
};
};
/*
* Text = ABCDEFABCDEF$
* 0123456789012
* sa_sample_dens = 4
* sa_sample_chars = {B,E}
* SA BWT (1)
* 12 F * $
* 06 F ABCDEF$
* 00 $ * ABCDEFABCDEF$
* 07 A BCDEF$
* 01 A BCDEFABCDEF$
* 08 B * CDEF$
* 02 B * CDEFABCDEF$
* 09 C DEF$
* 03 C DEFABCDEF$
* 10 D EF$
* 04 D * EFABCDEF$
* 11 E * F$
* 05 E * FABCDEF$
*
* In this sampling a suffix x=SA[i] is marked if x \( 0 \equiv x \mod sa_sample_dens \) or
* BWT[i] is contained in sa_sample_chars.
*/
template<class t_csa,
class bit_vector_type=bit_vector,
class rank_support_type=typename bit_vector_type::rank_1_type,
uint8_t t_width=0
>
class _bwt_sampling : public int_vector<t_width>
{
private:
bit_vector_type m_marked;
rank_support_type m_rank_marked;
public:
typedef int_vector<t_width> base_type;
typedef typename base_type::size_type size_type; // make typedefs of base_type visible
typedef typename base_type::value_type value_type; //
enum { sample_dens = t_csa::sa_sample_dens };
//! Default constructor
_bwt_sampling() {}
//! Constructor
/*
* \param cconfig Cache configuration (BWT,SA, and SAMPLE_CHARS are expected to be cached.).
* \param csa Pointer to the corresponding CSA. Not used in this class.
* \par Time complexity
* Linear in the size of the suffix array.
*/
_bwt_sampling(const cache_config& cconfig, SDSL_UNUSED const t_csa* csa=nullptr) {
int_vector_buffer<> sa_buf(cache_file_name(conf::KEY_SA, cconfig));
int_vector_buffer<t_csa::alphabet_type::int_width>
bwt_buf(cache_file_name(key_trait<t_csa::alphabet_type::int_width>::KEY_BWT,cconfig));
size_type n = sa_buf.size();
bit_vector marked(n, 0); // temporary bitvector for the marked text positions
this->width(bits::hi(n)+1);
int_vector<> sample_char;
typedef typename t_csa::char_type char_type;
std::set<char_type> char_map;
if (load_from_cache(sample_char, conf::KEY_SAMPLE_CHAR,cconfig)) {
for (uint64_t i=0; i<sample_char.size(); ++i) {
char_map.insert((char_type)sample_char[i]);
}
}
size_type sa_cnt = 0;
for (size_type i=0; i < n; ++i) {
size_type sa = sa_buf[i];
char_type bwt = bwt_buf[i];
if (0 == (sa % sample_dens)) {
marked[i] = 1;
++sa_cnt;
} else if (char_map.find(bwt) != char_map.end()) {
marked[i] = 1;
++sa_cnt;
}
}
this->resize(sa_cnt);
sa_cnt = 0;
for (size_type i=0; i < n; ++i) {
size_type sa = sa_buf[i];
if (marked[i]) {
(*this)[sa_cnt++] = sa;
}
}
util::assign(m_marked, marked);
util::init_support(m_rank_marked, &m_marked);
}
//! Copy constructor
_bwt_sampling(const _bwt_sampling& st) : base_type(st) {
m_marked = st.m_marked;
m_rank_marked = st.m_rank_marked;
m_rank_marked.set_vector(&m_marked);
}
//! Determine if index i is sampled or not
inline bool is_sampled(size_type i) const {
return m_marked[i];
}
//! Return the suffix array value for the sampled index i
inline value_type sa_value(size_type i) const {
return (*this)[m_rank_marked(i)];
}
//! Assignment operation
_bwt_sampling& operator=(const _bwt_sampling& st) {
if (this != &st) {
base_type::operator=(st);
m_marked = st.m_marked;
m_rank_marked = st.m_rank_marked;
m_rank_marked.set_vector(&m_marked);
}
return *this;
}
//! Swap operation
void swap(_bwt_sampling& st) {
base_type::swap(st);
m_marked.swap(st.m_marked);
util::swap_support(m_rank_marked, st.m_rank_marked, &m_marked, &(st.m_marked));
}
size_type serialize(std::ostream& out, structure_tree_node* v, std::string name)const {
structure_tree_node* child = structure_tree::add_child(v, name, util::class_name(*this));
size_type written_bytes = 0;
written_bytes += base_type::serialize(out, child, "samples");
written_bytes += m_marked.serialize(out, child, "marked");
written_bytes += m_rank_marked.serialize(out, child, "rank_marked");
structure_tree::add_size(child, written_bytes);
return written_bytes;
}
void load(std::istream& in) {
base_type::load(in);
m_marked.load(in);
m_rank_marked.load(in);
m_rank_marked.set_vector(&m_marked);
}
};
template<class t_bit_vec=bit_vector, class t_rank_sup=typename t_bit_vec::rank_1_type, uint8_t t_width=0>
class sa_bwt_sampling
{
public:
template<class t_csa> // template inner class which is used in CSAs to parametrize the
class type // sampling strategy class with the Sampling density of the CSA
{
public:
typedef _bwt_sampling<t_csa,
t_bit_vec,
t_rank_sup,
t_width
> sample_type;
};
};
} // end namespace
#endif
|