/usr/include/sdsl/csa_sada.hpp is in libsdsl-dev 2.0.3-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 | /* sdsl - succinct data structures library
Copyright (C) 2008-2013 Simon Gog
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses/ .
*/
/*! \file csa_sada.hpp
\brief csa_sada.hpp contains an implementation of the compressed suffix array.
\author Simon Gog
*/
#ifndef INCLUDED_SDSL_CSA_SADA
#define INCLUDED_SDSL_CSA_SADA
#include "enc_vector.hpp"
#include "int_vector.hpp"
#include "iterators.hpp"
#include "suffix_array_helper.hpp"
#include "util.hpp"
#include "csa_sampling_strategy.hpp"
#include "csa_alphabet_strategy.hpp"
#include <iostream>
#include <algorithm>
#include <cassert>
#include <cstring> // for strlen
#include <iomanip>
#include <iterator>
namespace sdsl
{
//! A class for the Compressed Suffix Array (CSA) proposed by Sadakane for practical implementation.
/*!
* \tparam t_enc_vec Space-efficient vector for increasing integer sequences.
* \tparam t_dens Sampling density of SA values
* \tparam t_int_dens Sampling density of ISA values
* \tparam t_sa_sample_strat Policy of SA sampling. E.g. sample in SA-order or text-order.
* \tparam t_isa Vector type for ISA sample values.
* \tparam t_alphabet_strat Policy for alphabet representation.
*
* \sa sdsl::csa_wt, sdsl::csa_bitcompressed
* @ingroup csa
*/
template<class t_enc_vec = enc_vector<>, // Vector type used to store the Psi-function
uint32_t t_dens = 32, // Sample density for suffix array (SA) values
uint32_t t_inv_dens = 64, // Sample density for inverse suffix array (ISA) values
class t_sa_sample_strat = sa_order_sa_sampling<>,// Policy class for the SA sampling. Alternative text_order_sa_sampling.
class t_isa = int_vector<>, // Container for the ISA samples.
class t_alphabet_strat = byte_alphabet // Policy class for the representation of the alphabet.
>
class csa_sada
{
friend class bwt_of_csa_psi<csa_sada>;
public:
enum { sa_sample_dens = t_dens,
isa_sample_dens = t_inv_dens
};
typedef uint64_t value_type;
typedef random_access_const_iterator<csa_sada> const_iterator;
typedef const_iterator iterator;
typedef const value_type const_reference;
typedef const_reference reference;
typedef const_reference* pointer;
typedef const pointer const_pointer;
typedef int_vector<>::size_type size_type;
typedef size_type csa_size_type;
typedef ptrdiff_t difference_type;
typedef t_enc_vec enc_vector_type;
typedef enc_vector_type psi_type;
typedef traverse_csa_psi<csa_sada,false> lf_type;
typedef bwt_of_csa_psi<csa_sada> bwt_type;
typedef isa_of_csa_psi<csa_sada> isa_type;
typedef text_of_csa<csa_sada> text_type;
typedef first_row_of_csa<csa_sada> first_row_type;
typedef typename t_sa_sample_strat::template type<csa_sada>::sample_type sa_sample_type;
typedef t_isa isa_sample_type;
typedef t_alphabet_strat alphabet_type;
typedef typename alphabet_type::alphabet_category alphabet_category;
typedef typename alphabet_type::comp_char_type comp_char_type;
typedef typename alphabet_type::char_type char_type; // Note: This is the char type of the CSA not the WT!
typedef typename alphabet_type::string_type string_type;
typedef csa_sada csa_type;
typedef csa_tag index_category;
typedef psi_tag extract_category;
friend class traverse_csa_psi<csa_sada,true>;
friend class traverse_csa_psi<csa_sada,false>;
static const uint32_t linear_decode_limit = 100000;
private:
enc_vector_type m_psi; // psi function
sa_sample_type m_sa_sample; // suffix array samples
isa_sample_type m_isa_sample; // inverse suffix array samples
alphabet_type m_alphabet; // alphabet component
mutable std::vector<uint64_t> m_psi_buf; // buffer for decoded psi values
void copy(const csa_sada& csa) {
m_psi = csa.m_psi;
m_sa_sample = csa.m_sa_sample;
m_isa_sample = csa.m_isa_sample;
m_alphabet = csa.m_alphabet;
};
void create_buffer() {
if (enc_vector_type::sample_dens < linear_decode_limit) {
m_psi_buf = std::vector<uint64_t>(enc_vector_type::sample_dens+1);
}
}
public:
const typename alphabet_type::char2comp_type& char2comp = m_alphabet.char2comp;
const typename alphabet_type::comp2char_type& comp2char = m_alphabet.comp2char;
const typename alphabet_type::C_type& C = m_alphabet.C;
const typename alphabet_type::sigma_type& sigma = m_alphabet.sigma;
const psi_type& psi = m_psi;
const lf_type lf = lf_type(*this);
const bwt_type bwt = bwt_type(*this);
const isa_type isa = isa_type(*this);
const bwt_type L = bwt_type(*this);
const first_row_type F = first_row_type(*this);
const text_type text = text_type(*this);
const sa_sample_type& sa_sample = m_sa_sample;
const isa_sample_type& isa_sample = m_isa_sample;
//! Default Constructor
csa_sada() {
create_buffer();
}
//! Default Destructor
~csa_sada() { }
//! Copy constructor
csa_sada(const csa_sada& csa) {
create_buffer();
copy(csa);
}
//! Move constructor
csa_sada(csa_sada&& csa) {
*this = std::move(csa);
}
csa_sada(cache_config& config);
//! Number of elements in the \f$\CSA\f$.
/*! Required for the Container Concept of the STL.
* \sa max_size, empty
* \par Time complexity
* \f$ \Order{1} \f$
*/
size_type size()const {
return m_psi.size();
}
//! Returns the largest size that csa_sada can ever have.
/*! Required for the Container Concept of the STL.
* \sa size
*/
static size_type max_size() {
return t_enc_vec::max_size();
}
//! Returns if the data strucutre is empty.
/*! Required for the Container Concept of the STL.A
* \sa size
*/
bool empty()const {
return m_psi.empty();
}
//! Swap method for csa_sada
/*! The swap method can be defined in terms of assignment.
This requires three assignments, each of which, for a container type, is linear
in the container's size. In a sense, then, a.swap(b) is redundant.
This implementation guaranties a run-time complexity that is constant rather than linear.
\param csa csa_sada to swap.
Required for the Assignable Conecpt of the STL.
*/
void swap(csa_sada& csa);
//! Returns a const_iterator to the first element.
/*! Required for the STL Container Concept.
* \sa end
*/
const_iterator begin()const {
return const_iterator(this, 0);
}
//! Returns a const_iterator to the element after the last element.
/*! Required for the STL Container Concept.
* \sa begin.
*/
const_iterator end()const {
return const_iterator(this, size());
}
//! []-operator
/*! \param i Index of the value. \f$ i \in [0..size()-1]\f$.
* Required for the STL Random Access Container Concept.
* \par Time complexity
* \f$ \Order{s_{SA}\cdot t_{\Psi}} \f$, where every \f$s_{SA}\f$th suffix array entry is sampled and \f$t_{\Psi}\f$
* is the access time for an element in the \f$\Psi\f$-function.
*/
inline value_type operator[](size_type i)const;
//! Assignment Copy Operator.
/*!
* Required for the Assignable Concept of the STL.
*/
csa_sada& operator=(const csa_sada& csa) {
if (this != &csa) {
copy(csa);
}
return *this;
}
//! Assignment Move Operator.
/*!
* Required for the Assignable Concept of the STL.
*/
csa_sada& operator=(csa_sada&& csa) {
if (this != &csa) {
m_psi = std::move(csa.m_psi);
m_sa_sample = std::move(csa.m_sa_sample);
m_isa_sample = std::move(csa.m_isa_sample);
m_alphabet = std::move(csa.m_alphabet);
m_psi_buf = std::move(csa.m_psi_buf);
}
return *this;
}
//! Serialize to a stream.
/*! \param out Outstream to write the data structure.
* \return The number of written bytes.
*/
size_type serialize(std::ostream& out, structure_tree_node* v=nullptr, std::string name="")const;
//! Load from a stream.
/*! \param in Input stream to load the data structure from.
*/
void load(std::istream& in);
uint32_t get_sample_dens() const {
return t_dens;
}
private:
// Calculates how many symbols c are in the prefix [0..i-1] of the BWT of the original text.
/*
* \param i The exclusive index of the prefix range [0..i-1], so \f$i\in [0..size()]\f$.
* \param c The symbol to count the occurrences in the prefix.
* \returns The number of occurrences of symbol c in the prefix [0..i-1] of the BWT.
* \par Time complexity
* \f$ \Order{\log n t_{\Psi}} \f$
*/
size_type rank_bwt(size_type i, const char_type c)const {
comp_char_type cc = char2comp[c];
if (cc==0 and c!=0) // character is not in the text => return 0
return 0;
if (i == 0)
return 0;
assert(i <= size());
size_type lower_b, upper_b; // lower_b inclusive, upper_b exclusive
const size_type sd = m_psi.get_sample_dens();
size_type lower_sb = (C[cc]+sd-1)/sd; // lower_sb inclusive
size_type upper_sb = (C[cc+1]+sd-1)/sd; // upper_sb exclusive
while (lower_sb+1 < upper_sb) {
size_type mid = (lower_sb+upper_sb)/2;
if (m_psi.sample(mid) >= i)
upper_sb = mid;
else
lower_sb = mid;
}
if (lower_sb == upper_sb) { // the interval was smaller than sd
lower_b = C[cc]; upper_b = C[cc+1];
} else if (lower_sb > (C[cc]+sd-1)/sd) { // main case
// TODO: don't use get_inter_sampled_values if t_dens is really
// large
lower_b = lower_sb*sd;
if (0 == m_psi_buf.size()) {
upper_b = std::min(upper_sb*sd, C[cc+1]);
goto finish;
}
uint64_t* p = m_psi_buf.data();
// extract the psi values between two samples
m_psi.get_inter_sampled_values(lower_sb, p);
p = m_psi_buf.data();
uint64_t smpl = m_psi.sample(lower_sb);
// handle border cases
if (lower_b + m_psi.get_sample_dens() >= C[cc+1])
m_psi_buf[ C[cc+1]-lower_b ] = size()-smpl;
else
m_psi_buf[ m_psi.get_sample_dens() ] = size()-smpl;
// search the result linear
while ((*p++)+smpl < i);
return p-1-m_psi_buf.data() + lower_b - C[cc];
} else { // lower_b == (m_C[cc]+sd-1)/sd and lower_sb < upper_sb
if (m_psi.sample(lower_sb) >= i) {
lower_b = C[cc];
upper_b = lower_sb * sd + 1;
} else {
lower_b = lower_sb * sd;
upper_b = std::min(upper_sb*sd, C[cc+1]);
}
}
finish:
// binary search the interval [C[cc]..C[cc+1]-1] for the result
// size_type lower_b = m_C[cc], upper_b = m_C[cc+1]; // lower_b inclusive, upper_b exclusive
while (lower_b+1 < upper_b) {
size_type mid = (lower_b+upper_b)/2;
if (m_psi[mid] >= i)
upper_b = mid;
else
lower_b = mid;
}
if (lower_b > C[cc])
return lower_b - C[cc] + 1;
else { // lower_b == m_C[cc]
return m_psi[lower_b] < i;// 1 if m_psi[lower_b]<i, 0 otherwise
}
}
// Calculates the position of the i-th c in the BWT of the original text.
/*
* \param i The i-th occurrence. \f$i\in [1..rank_bwt(size(),c)]\f$.
* \param c Symbol c.
* \returns The position of the i-th c in the BWT or size() if c does occur less then i times.
* \par Time complexity
* \f$ \Order{t_{\Psi}} \f$
*/
size_type select_bwt(size_type i, const char_type c)const {
assert(i > 0);
comp_char_type cc = char2comp[c];
if (cc==0 and c!=0) // character is not in the text => return 0
return size();
assert(cc != 255);
if (C[cc]+i-1 < C[cc+1]) {
return m_psi[C[cc]+i-1];
} else
return size();
}
};
// == template functions ==
template<class t_enc_vec, uint32_t t_dens, uint32_t t_inv_dens, class t_sa_sample_strat, class t_isa, class t_alphabet_strat>
csa_sada<t_enc_vec, t_dens, t_inv_dens, t_sa_sample_strat, t_isa, t_alphabet_strat>::csa_sada(cache_config& config)
{
create_buffer();
if (!cache_file_exists(key_trait<alphabet_type::int_width>::KEY_BWT, config)) {
return;
}
int_vector_buffer<alphabet_type::int_width> bwt_buf(cache_file_name(key_trait<alphabet_type::int_width>::KEY_BWT,config));
size_type n = bwt_buf.size();
{
auto event = memory_monitor::event("construct csa-alpbabet");
alphabet_type tmp_alphabet(bwt_buf, n);
m_alphabet.swap(tmp_alphabet);
}
int_vector<> cnt_chr(sigma, 0, bits::hi(n)+1);
for (typename alphabet_type::sigma_type i=0; i < sigma; ++i) {
cnt_chr[i] = C[i];
}
// calculate psi
{
auto event = memory_monitor::event("construct PSI");
// TODO: move PSI construct into construct_PSI.hpp
int_vector<> psi(n, 0, bits::hi(n)+1);
for (size_type i=0; i < n; ++i) {
psi[ cnt_chr[ char2comp[bwt_buf[i]] ]++ ] = i;
}
std::string psi_file = cache_file_name(conf::KEY_PSI, config);
if (!store_to_cache(psi, conf::KEY_PSI, config)) {
return;
}
}
{
auto event = memory_monitor::event("encode PSI");
int_vector_buffer<> psi_buf(cache_file_name(conf::KEY_PSI, config));
t_enc_vec tmp_psi(psi_buf);
m_psi.swap(tmp_psi);
}
{
auto event = memory_monitor::event("sample SA");
sa_sample_type tmp_sa_sample(config);
m_sa_sample.swap(tmp_sa_sample);
}
{
auto event = memory_monitor::event("sample ISA");
int_vector_buffer<> sa_buf(cache_file_name(conf::KEY_SA, config));
set_isa_samples<csa_sada>(sa_buf, m_isa_sample);
}
}
template<class t_enc_vec, uint32_t t_dens, uint32_t t_inv_dens, class t_sa_sample_strat, class t_isa, class t_alphabet_strat>
inline auto csa_sada<t_enc_vec, t_dens, t_inv_dens, t_sa_sample_strat, t_isa, t_alphabet_strat>::operator[](size_type i)const -> value_type
{
size_type off = 0;
while (!m_sa_sample.is_sampled(i)) { // while i mod t_dens != 0 (SA[i] is not sampled) SG: auf keinen Fall get_sample_dens nehmen, ist total langsam
i = psi[i]; // go to the position where SA[i]+1 is located
++off; // add 1 to the offset
}
value_type result = m_sa_sample.sa_value(i);
if (result < off) {
return m_psi.size()-(off-result);
} else
return result-off;
}
template<class t_enc_vec, uint32_t t_dens, uint32_t t_inv_dens, class t_sa_sample_strat, class t_isa, class t_alphabet_strat>
auto csa_sada<t_enc_vec, t_dens, t_inv_dens, t_sa_sample_strat, t_isa, t_alphabet_strat>::serialize(std::ostream& out, structure_tree_node* v, std::string name)const -> size_type
{
structure_tree_node* child = structure_tree::add_child(v, name, util::class_name(*this));
size_type written_bytes = 0;
written_bytes += m_psi.serialize(out, child, "psi");
written_bytes += m_sa_sample.serialize(out, child, "sa_samples");
written_bytes += m_isa_sample.serialize(out, child, "isa_samples");
written_bytes += m_alphabet.serialize(out, child, "alphabet");
structure_tree::add_size(child, written_bytes);
return written_bytes;
}
template<class t_enc_vec, uint32_t t_dens, uint32_t t_inv_dens, class t_sa_sample_strat, class t_isa, class t_alphabet_strat>
void csa_sada<t_enc_vec, t_dens, t_inv_dens, t_sa_sample_strat, t_isa, t_alphabet_strat>::load(std::istream& in)
{
m_psi.load(in);
m_sa_sample.load(in);
m_isa_sample.load(in);
m_alphabet.load(in);
}
template<class t_enc_vec, uint32_t t_dens, uint32_t t_inv_dens, class t_sa_sample_strat, class t_isa, class t_alphabet_strat>
void csa_sada<t_enc_vec, t_dens, t_inv_dens, t_sa_sample_strat, t_isa, t_alphabet_strat>::swap(csa_sada<t_enc_vec, t_dens, t_inv_dens, t_sa_sample_strat, t_isa, t_alphabet_strat>& csa)
{
if (this != &csa) {
m_psi.swap(csa.m_psi);
m_sa_sample.swap(csa.m_sa_sample);
m_isa_sample.swap(csa.m_isa_sample);
m_alphabet.swap(csa.m_alphabet);
}
}
} // end namespace sdsl
#endif
|