This file is indexed.

/usr/include/sdsl/csa_alphabet_strategy.hpp is in libsdsl-dev 2.0.3-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
/* sdsl - succinct data structures library
    Copyright (C) 2012 Simon Gog

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program.  If not, see http://www.gnu.org/licenses/ .
*/
/*! \file csa_alphabet_strategy.hpp
    \brief csa_alphabet_strategy.hpp includes different strategy classes for representing an alphabet of a CSA.
    \author Simon Gog
*/

#ifndef INCLUDED_CSA_ALPHABET_STRATEGY
#define INCLUDED_CSA_ALPHABET_STRATEGY


// TODO: Strategy with 1-to-1 mapping and C_array type as template parameter
//       This can be also used for a integer based CSA.

/* A alphabet strategy provides the following features:
 *   * Member `sigma` which contains the size (=umber of unique symbols) of the alphabet.
 *   * Method `is_present(char_type c)` which indicates if character c occurs in the text.
 *   * Container `char2comp` which maps a symbol to a number [0..sigma-1]. The alphabetic
 *     order is preserved.
 *   * Container `comp2char` which is the inverse mapping of char2comp.
 *   * Container `C` contains the cumulative counts of occurrences. C[i] is the cumulative
 *     count of occurrences of symbols `comp2char[0]` to `comp2char[i-1]` in the text.
 *   * Typedefs for the four above members:
 *       * char2comp_type
 *       * comp2char_type
 *       * C_type
 *       * sigma_type
 *   * Constructor. Takes a int_vector_buffer<8> for byte-alphabets
 *     and int_vector_buffer<0> for integer-alphabets.
 *
 *    \par Note
 *   sigma_type has to be large enough to represent the alphabet size 2*sigma,
 *   since there is code which will perform a binary search on array `C`.
 */

#include "int_vector.hpp"
#include "sd_vector.hpp"
#include "rank_support.hpp"
#include "select_support.hpp"
#include "sdsl_concepts.hpp"
#include "config.hpp"
#include <string>

namespace sdsl
{

// forward declarations

class byte_alphabet;

template<class bit_vector_type     = bit_vector,
         class rank_support_type   = rank_support_scan<>,   //typename bit_vector_type::rank_1_type,
         class select_support_type = select_support_scan<>, //typename bit_vector_type::select_1_type,
         class C_array_type        = int_vector<>
         >
class succinct_byte_alphabet;

template<class bit_vector_type     = sd_vector<>,
         class rank_support_type   = typename bit_vector_type::rank_1_type,
         class select_support_type = typename bit_vector_type::select_1_type,
         class C_array_type        = int_vector<>
         >
class int_alphabet;

template <uint8_t int_width>
struct key_trait {
    static const char* KEY_BWT;
    static const char* KEY_TEXT;
};

template<>
struct key_trait<8> {
    static const char* KEY_BWT;
    static const char* KEY_TEXT;
};

template<uint8_t int_width>
const char* key_trait<int_width>::KEY_BWT = conf::KEY_BWT_INT;

template<uint8_t int_width>
const char* key_trait<int_width>::KEY_TEXT = conf::KEY_TEXT_INT;

template<class t_alphabet_strategy>
struct alphabet_trait {
    typedef byte_alphabet type;
};

template<>
struct alphabet_trait<int_alphabet_tag> {
    typedef int_alphabet<> type;
};

//! A simple space greedy representation for byte alphabets.
/*!
 *  \par Space consumption:
 *       At least: 2.5 kB
 *       Details:  char2comp + comp2char take  2*256 + 2*8 bytes
 *                 m_C                   takes       257*8 bytes
 *                 m_sigma               takes           2 bytes
 */
class byte_alphabet
{
    public:
        typedef int_vector<>::size_type size_type;
        typedef int_vector<8>           char2comp_type;
        typedef int_vector<8>           comp2char_type;
        typedef int_vector<64>          C_type;
        typedef uint16_t                sigma_type;
        typedef uint8_t                 char_type;
        typedef uint8_t                 comp_char_type;
        typedef std::string             string_type;
        enum { int_width = 8 };

        typedef byte_alphabet_tag       alphabet_category;
    private:
        char2comp_type m_char2comp; // Mapping from a character into the compact alphabet.
        comp2char_type m_comp2char; // Inverse mapping of m_char2comp.
        C_type         m_C;         // Cumulative counts for the compact alphabet [0..sigma].
        sigma_type     m_sigma;     // Effective size of the alphabet.

        void copy(const byte_alphabet&);
    public:

        const char2comp_type& char2comp;
        const comp2char_type& comp2char;
        const C_type&         C;
        const sigma_type&     sigma;

        //! Default constructor
        byte_alphabet();

        //! Construct from a byte-stream
        /*!
         *  \param text_buf Byte stream.
         *  \param len      Length of the byte stream.
         */
        byte_alphabet(int_vector_buffer<8>& text_buf, int_vector_size_type len);

        byte_alphabet(const byte_alphabet&);
        byte_alphabet(byte_alphabet&& b) : byte_alphabet() {
            *this = std::move(b);
        }

        byte_alphabet& operator=(const byte_alphabet&);
        byte_alphabet& operator=(byte_alphabet&&);

        void swap(byte_alphabet&);

        size_type serialize(std::ostream& out, structure_tree_node* v=nullptr, std::string name="")const;

        void load(std::istream& in);
};


//! A space-efficient representation for byte alphabets.
/*!
 *  The mapping `char2comp` and its inverse `comp2char` is realized internally
 *  by a bitvector of size 256 bits and a rank and a select structure. The rank
 *  structure is used to calculate `char2comp`; the select structure is used to
 *  calculate `comp2char`. Array `C` is represented by a bit-compressed
 *  `int_vector` and `sigma` by a uint16_t.
 *  The types to represent `char2comp`, `comp2char`, and `C` can be specified
 *  by template parameters.
 */
template<class bit_vector_type, class rank_support_type, class select_support_type, class C_array_type>
class succinct_byte_alphabet
{
    public:
        class char2comp_wrapper;
        class comp2char_wrapper;
        friend class char2comp_wrapper;
        friend class comp2char_wrapper;

        typedef int_vector<>::size_type size_type;
        typedef char2comp_wrapper       char2comp_type;
        typedef comp2char_wrapper       comp2char_type;
        typedef C_array_type            C_type;
        typedef uint16_t                sigma_type;
        typedef uint8_t                 char_type;
        typedef uint8_t                 comp_char_type;
        typedef std::string             string_type;
        typedef byte_alphabet_tag       alphabet_category;
        enum { int_width = 8 };

        //! Helper class for the char2comp mapping
        class char2comp_wrapper
        {
            private:
                const succinct_byte_alphabet* m_strat;
            public:
                char2comp_wrapper(const succinct_byte_alphabet* strat) : m_strat(strat) {}
                comp_char_type operator[](char_type c) const {
                    return (comp_char_type) m_strat->m_char_rank((size_type)c);
                }
        };

        //! Helper class for the comp2char mapping
        class comp2char_wrapper
        {
            private:
                const succinct_byte_alphabet* m_strat;
            public:
                comp2char_wrapper(const succinct_byte_alphabet* strat) : m_strat(strat) {}
                char_type operator[](comp_char_type c) const {
                    return (char_type) m_strat->m_char_select(((size_type)c)+1);
                }
        };

    private:
        bit_vector_type     m_char;        // `m_char[i]` indicates if character with code i is present or not
        rank_support_type   m_char_rank;   // rank data structure for `m_char` to answer char2comp
        select_support_type m_char_select; // select data structure for `m_char` to answer comp2char
        C_type              m_C;            // cumulative counts for the compact alphabet [0..sigma]
        sigma_type          m_sigma;       // effective size of the alphabet

        void copy(const succinct_byte_alphabet& strat) {
            m_char        = strat.m_char;
            m_char_rank   = strat.m_char_rank;
            m_char_rank.set_vector(&m_char);
            m_char_select = strat.m_char_select;
            m_char_select.set_vector(&m_char);
            m_C           = strat.m_C;
            m_sigma       = strat.m_sigma;
        }
    public:

        const char2comp_type char2comp;
        const comp2char_type comp2char;
        const C_type&        C;
        const sigma_type&    sigma;

        //! Default constructor
        succinct_byte_alphabet() : char2comp(this), comp2char(this), C(m_C), sigma(m_sigma) {
            m_sigma = 0;
        }

        //! Construct from a byte-stream
        /*!
         *  \param text_buf Byte stream.
         *  \param len      Length of the byte stream.
         */
        succinct_byte_alphabet(int_vector_buffer<8>& text_buf, int_vector_size_type len):
            char2comp(this), comp2char(this), C(m_C), sigma(m_sigma) {
            m_sigma = 0;
            if (0 == len or 0 == text_buf.size())
                return;
            assert(len <= text_buf.size());
            // initialize vectors
            int_vector<64> D(257, 0);
            bit_vector tmp_char(256, 0);
            // count occurrences of each symbol
            for (size_type i=0; i < len; ++i) {
                ++D[text_buf[i]];
            }
            assert(1 == D[0]); // null-byte should occur exactly once
            m_sigma = 0;
            for (int i=0; i<256; ++i)
                if (D[i]) {
                    tmp_char[i] = 1;    // mark occurring character
                    D[m_sigma] = D[i];  // compactify m_C
                    ++m_sigma;
                }
            // resize to sigma+1, since CSAs also need the sum of all elements
            m_C = C_type(m_sigma+1, 0, bits::hi(len)+1);

            for (int i=(int)m_sigma; i > 0; --i) m_C[i] = D[i-1];
            m_C[0] = 0;
            for (int i=1; i <= (int)m_sigma; ++i) m_C[i] = m_C[i] + m_C[i-1];
            assert(m_C[sigma]==len);
            m_char = tmp_char;
            util::init_support(m_char_rank, &m_char);
            util::init_support(m_char_select, &m_char);
        }

        //! Copy constructor
        succinct_byte_alphabet(const succinct_byte_alphabet& strat): char2comp(this), comp2char(this), C(m_C), sigma(m_sigma) {
            copy(strat);
        }

        //! Move constructor
        succinct_byte_alphabet(succinct_byte_alphabet&& strat) {
            *this = std::move(strat);
        }

        succinct_byte_alphabet& operator=(const succinct_byte_alphabet& strat) {
            if (this != &strat) {
                copy(strat);
            }
            return *this;
        }

        succinct_byte_alphabet& operator=(succinct_byte_alphabet&& strat) {
            if (this != &strat) {
                m_char        = std::move(strat.m_char);
                m_char_rank   = std::move(strat.m_char_rank);
                m_char_rank.set_vector(&m_char);
                m_char_select = std::move(strat.m_char_select);
                m_char_select.set_vector(&m_char);
                m_C           = std::move(strat.m_C);
                m_sigma       = std::move(strat.m_sigma);
            }
            return *this;
        }

        //! Swap operator
        void swap(succinct_byte_alphabet& strat) {
            m_char.swap(strat.m_char);
            util::swap_support(m_char_rank, strat.m_char_rank, &m_char, &(strat.m_char));
            util::swap_support(m_char_select, strat.m_char_select, &m_char, &(strat.m_char));
            m_C.swap(strat.m_C);
            std::swap(m_sigma,strat.m_sigma);
        }

        //! Serialize method
        size_type serialize(std::ostream& out, structure_tree_node* v=nullptr, std::string name="")const {
            structure_tree_node* child = structure_tree::add_child(v, name, util::class_name(*this));
            size_type written_bytes = 0;
            written_bytes += m_char.serialize(out, child, "m_char");
            written_bytes += m_char_rank.serialize(out, child, "m_char_rank");
            written_bytes += m_char_select.serialize(out, child, "m_char_select");
            written_bytes += m_C.serialize(out, child, "m_C");
            written_bytes += write_member(m_sigma, out, child, "m_sigma");
            structure_tree::add_size(child, written_bytes);
            return written_bytes;
        }

        //! Load method
        void load(std::istream& in) {
            m_char.load(in);
            m_char_rank.load(in);
            m_char_rank.set_vector(&m_char);
            m_char_select.load(in);
            m_char_select.set_vector(&m_char);
            m_C.load(in);
            read_member(m_sigma, in);
        }
};

//! A space-efficient representation for byte alphabets.
/*!
 *  The mapping `char2comp` and its inverse `comp2char` is realized internally
 *  by a bitvector of size sigma bits and a rank and a select structure, if the
 *  alphabet contains not all symbols in the range [0..sigma-1]. If it contains
 *  all symbols, i.e. the alphabet is continuous, then we map the symbols
 *  directly and no extra space is used.
 *
 *  The types to represent `char2comp`, `comp2char`, and `C` can be specified
 *  by template parameters.
 */
template<class bit_vector_type, class rank_support_type, class select_support_type, class C_array_type>
class int_alphabet
{
    public:
        class char2comp_wrapper;
        class comp2char_wrapper;
        friend class char2comp_wrapper;
        friend class comp2char_wrapper;

        typedef int_vector<>::size_type size_type;
        typedef char2comp_wrapper       char2comp_type;
        typedef comp2char_wrapper       comp2char_type;
        typedef C_array_type            C_type;
        typedef uint64_t                sigma_type;
        typedef uint64_t                char_type;
        typedef uint64_t                comp_char_type;
        typedef std::vector<char_type>  string_type;
        typedef int_alphabet_tag        alphabet_category;
        enum { int_width = 0 };

        //! Helper class for the char2comp mapping
        class char2comp_wrapper
        {
            private:
                const int_alphabet* m_strat;
            public:
                char2comp_wrapper(const int_alphabet* strat) : m_strat(strat) {}
                comp_char_type operator[](char_type c) const {
                    if (m_strat->m_char.size() > 0) {  // if alphabet is not continuous
                        return (comp_char_type) m_strat->m_char_rank((size_type)c);
                    } else { // direct map if it is continuous
                        return (comp_char_type) c;
                    }
                }
        };

        //! Helper class for the comp2char mapping
        class comp2char_wrapper
        {
            private:
                const int_alphabet* m_strat;
            public:
                comp2char_wrapper(const int_alphabet* strat) : m_strat(strat) {}
                char_type operator[](comp_char_type c) const {
                    if (m_strat->m_char.size() > 0) {  // if alphabet is not continuous
                        return (char_type) m_strat->m_char_select(((size_type)c)+1);
                    } else { // direct map if it is continuous
                        return (char_type) c;
                    }
                }
        };

    private:
        bit_vector_type     m_char;        // `m_char[i]` indicates if character with code i is present or not
        rank_support_type   m_char_rank;   // rank data structure for `m_char` to answer char2comp
        select_support_type m_char_select; // select data structure for `m_char` to answer comp2char
        C_type              m_C;           // cumulative counts for the compact alphabet [0..sigma]
        sigma_type          m_sigma;       // effective size of the alphabet

        void copy(const int_alphabet& strat) {
            m_char        = strat.m_char;
            m_char_rank   = strat.m_char_rank;
            m_char_rank.set_vector(&m_char);
            m_char_select = strat.m_char_select;
            m_char_select.set_vector(&m_char);
            m_C           = strat.m_C;
            m_sigma       = strat.m_sigma;
        }

        //! Check if the alphabet is continuous.
        bool is_continuous_alphabet(std::map<size_type, size_type>& D) {
            if (D.size() == 0) {  // an empty alphabet is continuous
                return true;
            } else {
                //            max key      + 1  ==  size of map
                return ((--D.end())->first + 1) ==  D.size();
            }
        }
    public:

        const char2comp_type char2comp;
        const comp2char_type comp2char;
        const C_type&        C;
        const sigma_type&    sigma;

        //! Default constructor
        int_alphabet() : char2comp(this), comp2char(this), C(m_C), sigma(m_sigma) {
            m_sigma = 0;
        }

        //! Construct from a byte-stream
        /*!
         *  \param text_buf Byte stream.
         *  \param len      Length of the byte stream.
         */
        int_alphabet(int_vector_buffer<0>& text_buf, int_vector_size_type len):
            char2comp(this), comp2char(this), C(m_C), sigma(m_sigma) {
            m_sigma = 0;
            if (0 == len or 0 == text_buf.size())
                return;
            assert(len <= text_buf.size());
            // initialize vectors
            std::map<size_type, size_type> D;
            // count occurrences of each symbol
            for (size_type i=0; i < len; ++i) {
                D[text_buf[i]]++;
            }
            m_sigma = D.size();
            if (is_continuous_alphabet(D)) {
                // do not initialize m_char, m_char_rank and m_char_select since we can map directly
            } else {
                // note: the alphabet has at least size 1, so the following is safe:
                size_type largest_symbol = (--D.end())->first;
                bit_vector tmp_char(largest_symbol+1, 0);
                for (std::map<size_type, size_type>::const_iterator it = D.begin(), end=D.end(); it != end; ++it) {
                    tmp_char[it->first] = 1;
                }
                m_char = tmp_char;
                util::init_support(m_char_rank, &m_char);
                util::init_support(m_char_select, &m_char);
            }
            assert(D.find(0) != D.end() and 1 == D[0]); // null-byte should occur exactly once

            // resize to sigma+1, since CSAs also need the sum of all elements
            m_C = C_type(m_sigma+1, 0, bits::hi(len)+1);
            size_type sum = 0, idx=0;
            for (std::map<size_type, size_type>::const_iterator it = D.begin(), end=D.end(); it != end; ++it) {
                m_C[idx++] = sum;
                sum += it->second;
            }
            m_C[idx] = sum;  // insert sum of all elements
        }

        //! Copy constructor
        int_alphabet(const int_alphabet& strat): char2comp(this), comp2char(this), C(m_C), sigma(m_sigma) {
            copy(strat);
        }

        //! Copy constructor
        int_alphabet(int_alphabet&& strat) {
            *this = std::move(strat);
        }

        int_alphabet& operator=(const int_alphabet& strat) {
            if (this != &strat) {
                copy(strat);
            }
            return *this;
        }

        int_alphabet& operator=(int_alphabet&& strat) {
            if (this != &strat) {
                m_char        = std::move(strat.m_char);
                m_char_rank   = std::move(strat.m_char_rank);
                m_char_rank.set_vector(&m_char);
                m_char_select = std::move(strat.m_char_select);
                m_char_select.set_vector(&m_char);
                m_C           = std::move(strat.m_C);
                m_sigma       = std::move(strat.m_sigma);
            }
            return *this;
        }

        //! Swap operator
        void swap(int_alphabet& strat) {
            m_char.swap(strat.m_char);
            util::swap_support(m_char_rank, strat.m_char_rank, &m_char, &(strat.m_char));
            util::swap_support(m_char_select, strat.m_char_select, &m_char, &(strat.m_char));
            m_C.swap(strat.m_C);
            std::swap(m_sigma,strat.m_sigma);
        }

        //! Serialize method
        size_type serialize(std::ostream& out, structure_tree_node* v=nullptr, std::string name="")const {
            structure_tree_node* child = structure_tree::add_child(v, name, util::class_name(*this));
            size_type written_bytes = 0;
            written_bytes += m_char.serialize(out, child, "m_char");
            written_bytes += m_char_rank.serialize(out, child, "m_char_rank");
            written_bytes += m_char_select.serialize(out, child, "m_char_select");
            written_bytes += m_C.serialize(out, child, "m_C");
            written_bytes += write_member(m_sigma, out, child, "m_sigma");
            structure_tree::add_size(child, written_bytes);
            return written_bytes;
        }

        //! Load method
        void load(std::istream& in) {
            m_char.load(in);
            m_char_rank.load(in);
            m_char_rank.set_vector(&m_char);
            m_char_select.load(in);
            m_char_select.set_vector(&m_char);
            m_C.load(in);
            read_member(m_sigma, in);
        }
};

} // end namespace sdsl

#endif