This file is indexed.

/usr/include/sdsl/bits.hpp is in libsdsl-dev 2.0.3-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
/* sdsl - succinct data structures library
    Copyright (C) 2008 Simon Gog

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program.  If not, see http://www.gnu.org/licenses/ .
*/
/*! \file bits.hpp
    \brief bits.hpp contains the sdsl::bits class.
	\author Simon Gog
*/
#ifndef INCLUDED_SDSL_BITS
#define INCLUDED_SDSL_BITS

#include <stdint.h> // for uint64_t uint32_t declaration
#include <iostream>// for cerr
#include <cassert>
#ifdef __SSE4_2__
#include <xmmintrin.h>
#endif

//! Namespace for the succinct data structure library.
namespace sdsl
{

//! A helper class for bitwise tricks on 64 bit words.
/*!
	bits is a helper class for bitwise tricks and
	techniques. For the basic tricks and techiques we refer to Donald E. Knuth's
	"The Art of Computer Programming", Volume 4A, Chapter 7.1.3 and
	the informative website of Sean E. Anderson about the topic:
	http://www-graphics.stanford.edu/~seander/bithacks.html .

	We have added new functions like: cnt11 and sel11.

	All members of this class are static variables or methods.
	This class cannot be instantiated.

	\author Simon Gog
 */
struct bits {
    bits() = delete;
    //! 64bit mask with all bits set to 1.
    constexpr static int64_t  all_set {-1LL};

    //! This constant represents a de Bruijn sequence B(k,n) for k=2 and n=6.
    /*! Details for de Bruijn sequences see
       http://en.wikipedia.org/wiki/De_bruijn_sequence
       deBruijn64 is used in combination with the
       array lt_deBruijn_to_idx.
    */
    constexpr static uint64_t deBruijn64 {0x0218A392CD3D5DBFULL};

    //! This table maps a 6-bit subsequence S[idx...idx+5] of constant deBruijn64 to idx.
    /*! \sa deBruijn64
    */
    static const uint32_t lt_deBruijn_to_idx[64];

    //! Array containing Fibonacci numbers less than \f$2^64\f$.
    static const uint64_t lt_fib[92];

    //! Lookup table for byte popcounts.
    static const uint8_t lt_cnt[256];

    //! Lookup table for most significant set bit in a byte.
    static const uint32_t lt_hi[256];

    //! lo_set[i] is a 64-bit word with the i least significant bits set and the high bits not set.
    /*! lo_set[0] = 0ULL, lo_set[1]=1ULL, lo_set[2]=3ULL...
     */
    static const uint64_t lo_set[65];

    //! lo_unset[i] is a 64-bit word with the i least significant bits not set and the high bits set.
    /*! lo_unset[0] = FFFFFFFFFFFFFFFFULL, lo_unset_set[1]=FFFFFFFFFFFFFFFEULL, ...
     */
    static const uint64_t lo_unset[65];

    //! Lookup table for least significant set bit in a byte.
    static const uint8_t lt_lo[256];

    //! Lookup table for select on bytes.
    /*! Entry at idx = 256*j + i equals the position of the
        (j+1)-th set bit in byte i. Positions lie in the range \f$[0..7]\f$.
     */
    static const uint8_t lt_sel[256*8];

    //! Use to help to decide if a prefix sum stored in a byte overflows.
    static const uint64_t ps_overflow[65];

    //! Counts the number of set bits in x.
    /*! \param  x 64-bit word
        \return Number of set bits.
     */
    static uint64_t cnt(uint64_t x);

    //! Position of the most significant set bit the 64-bit word x
    /*! \param x 64-bit word
        \return The position (in 0..63) of the least significant set bit
                in `x` or 0 if x equals 0.
    	\sa sel, lo
    */
    static uint32_t hi(uint64_t x);

    //! Calculates the position of the rightmost 1-bit in the 64bit integer x if it exists
    /*! \param x 64 bit integer.
    	\return The position (in 0..63) of the rightmost 1-bit in the 64bit integer x if
    	        x>0 and 0 if x equals 0.
    	\sa sel, hi
    */
    static uint32_t lo(uint64_t x);

    //! Counts the number of 1-bits in the 32bit integer x.
    /*! This function is a variant of the method cnt. If
    	32bit multiplication is fast, this method beats the cnt.
    	for 32bit integers.
    	\param x 64bit integer to count the bits.
    	\return The number of 1-bits in x.
     */
    static uint32_t cnt32(uint32_t x);

    //! Count the number of consecutive and distinct 11 in the 64bit integer x.
    /*!
      	\param x 64bit integer to count the terminating sequence 11 of a Fibonacci code.
    	\param c Carry equals msb of the previous 64bit integer.
     */
    static uint32_t cnt11(uint64_t x, uint64_t& c);

    //! Count the number of consecutive and distinct 11 in the 64bit integer x.
    /*!
      	\param x 64bit integer to count the terminating sequence 11 of a Fibonacci code.
     */
    static uint32_t cnt11(uint64_t x);

    //! Count 10 bit pairs in the word x.
    /*!
     * \param x 64bit integer to count the 10 bit pairs.
     * \param c Carry equals msb of the previous 64bit integer.
     */
    static uint32_t cnt10(uint64_t x, uint64_t& c);

    //! Count 01 bit pairs in the word x.
    /*!
     * \param x 64bit integer to count the 01 bit pairs.
     * \param c Carry equals msb of the previous 64bit integer.
     */
    static uint32_t cnt01(uint64_t x, uint64_t& c);

    //! Map all 10 bit pairs to 01 or 1 if c=1 and the lsb=0. All other pairs are mapped to 00.
    static uint64_t map10(uint64_t x, uint64_t c=0);

    //! Map all 01 bit pairs to 01 of 1 if c=1 and the lsb=0. All other pairs are mapped to 00.
    static uint64_t map01(uint64_t x, uint64_t c=1);

    //! Calculate the position of the i-th rightmost 1 bit in the 64bit integer x
    /*!
      	\param x 64bit integer.
    	\param i Argument i must be in the range \f$[1..cnt(x)]\f$.
    	\pre Argument i must be in the range \f$[1..cnt(x)]\f$.
      	\sa hi, lo
     */
    static uint32_t sel(uint64_t x, uint32_t i);
    static uint32_t _sel(uint64_t x, uint32_t i);

    //! Calculates the position of the i-th rightmost 11-bit-pattern which terminates a Fibonacci coded integer in x.
    /*!	\param x 64 bit integer.
        \param i Index of 11-bit-pattern. \f$i \in [1..cnt11(x)]\f$
    	\param c Carry bit from word before
     	\return The position (in 1..63) of the i-th 11-bit-pattern which terminates a Fibonacci coded integer in x if
    	        x contains at least i 11-bit-patterns and a undefined value otherwise.
        \sa cnt11, hi11, sel

     */
    static uint32_t sel11(uint64_t x, uint32_t i, uint32_t c=0);

    //! Calculates the position of the leftmost 11-bit-pattern which terminates a Fibonacci coded integer in x.
    /*! \param x 64 bit integer.
        \return The position (in 1..63) of the leftmost 1 of the leftmost 11-bit-pattern which
    	        terminates a Fibonacci coded integer in x if x contains a 11-bit-pattern
    			and 0 otherwise.
    	\sa cnt11, sel11
    */
    static uint32_t hi11(uint64_t x);

    //! Writes value x to an bit position in an array.
    static void write_int(uint64_t* word, uint64_t x, const uint8_t offset=0, const uint8_t len=64);

    //! Writes value x to an bit position in an array and moves the bit-pointer.
    static void write_int_and_move(uint64_t*& word, uint64_t x, uint8_t& offset, const uint8_t len);

    //! Reads a value from a bit position in an array.
    static uint64_t read_int(const uint64_t* word, uint8_t offset=0, const uint8_t len=64);

    //! Reads a value from a bit position in an array and moved the bit-pointer.
    static uint64_t read_int_and_move(const uint64_t*& word, uint8_t& offset, const uint8_t len=64);

    //! Reads an unary decoded value from a bit position in an array.
    static uint64_t read_unary(const uint64_t* word, uint8_t offset=0);

    //! Reads an unary decoded value from a bit position in an array and moves the bit-pointer.
    static uint64_t read_unary_and_move(const uint64_t*& word, uint8_t& offset);

    //! Move the bit-pointer (=uint64_t word and offset) `len` to the right.
    /*!\param word   64-bit word part of the bit pointer
     * \param offset Offset part of the bit pointer
     * \param len    Move distance. \f$ len \in [0..64] \f$
     * \sa move_left
     */
    static void move_right(const uint64_t*& word, uint8_t& offset, const uint8_t len);

    //! Move the bit-pointer (=uint64_t word and offset) `len` to the left.
    /*!\param word   64-bit word part of the bit pointer
     * \param offset Offset part of the bit pointer
     * \param len    Move distance. \f$ len \in [0..64] \f$
     * \sa move_right
     */
    static void move_left(const uint64_t*& word, uint8_t& offset, const uint8_t len);

    //! Get the first one bit in the interval \f$[idx..\infty )\f$
    static uint64_t next(const uint64_t* word, uint64_t idx);

    //! Get the one bit with the greatest position in the interval \f$[0..idx]\f$
    static uint64_t prev(const uint64_t* word, uint64_t idx);

    //! reverses a given 64 bit word
    static uint64_t rev(uint64_t x);
};


// ============= inline - implementations ================

// see page 11, Knuth TAOCP Vol 4 F1A
inline uint64_t bits::cnt(uint64_t x)
{
#ifdef __SSE4_2__
    return __builtin_popcountll(x);
#else
#ifdef POPCOUNT_TL
    return lt_cnt[x&0xFFULL] + lt_cnt[(x>>8)&0xFFULL] +
           lt_cnt[(x>>16)&0xFFULL] + lt_cnt[(x>>24)&0xFFULL] +
           lt_cnt[(x>>32)&0xFFULL] + lt_cnt[(x>>40)&0xFFULL] +
           lt_cnt[(x>>48)&0xFFULL] + lt_cnt[(x>>56)&0xFFULL];
#else
    x = x-((x>>1) & 0x5555555555555555ull);
    x = (x & 0x3333333333333333ull) + ((x >> 2) & 0x3333333333333333ull);
    x = (x + (x >> 4)) & 0x0f0f0f0f0f0f0f0full;
    return (0x0101010101010101ull*x >> 56);
#endif
#endif
}

inline uint32_t bits::cnt32(uint32_t x)
{
    x = x-((x>>1) & 0x55555555);
    x = (x & 0x33333333) + ((x>>2) & 0x33333333);
    return (0x10101010*x >>28)+(0x01010101*x >>28);
}


inline uint32_t bits::cnt11(uint64_t x, uint64_t& c)
{
    // extract "11" 2bit blocks
    uint64_t ex11 = (x&(x>>1))&0x5555555555555555ULL, t;
    // extract "10" 2bit blocks
    uint64_t ex10or01 = (ex11|(ex11<<1))^x;

    x = ex11 | ((t=(ex11|(ex11<<1))+(((ex10or01<<1)&0x5555555555555555ULL)|c))&(ex10or01&0x5555555555555555ULL));
    c = (ex10or01>>63) or(t < (ex11|(ex11<<1)));

    x = (x & 0x3333333333333333ULL) + ((x >> 2) & 0x3333333333333333ULL);
    x = (x + (x >> 4)) & 0x0F0F0F0F0F0F0F0FULL;
    return (0x0101010101010101ULL*x >> 56);
}

inline uint32_t bits::cnt11(uint64_t x)
{
    // extract "11" 2bit blocks
    uint64_t ex11 = (x&(x>>1))&0x5555555555555555ULL;
    // extract "10" 2bit blocks
    uint64_t ex10or01 = (ex11|(ex11<<1))^x;

    x = ex11 | (((ex11|(ex11<<1))+((ex10or01<<1)&0x5555555555555555ULL))&(ex10or01&0x5555555555555555ULL));

    x = (x & 0x3333333333333333ULL) + ((x >> 2) & 0x3333333333333333ULL);
    x = (x + (x >> 4)) & 0x0F0F0F0F0F0F0F0FULL;
    return (0x0101010101010101ULL*x >> 56);
}

inline uint32_t bits::cnt10(uint64_t x, uint64_t& c)
{
    uint32_t res = cnt((x ^((x<<1) | c)) & (~x));
    c = (x >> 63);
    return res;
}

inline uint64_t bits::map10(uint64_t x, uint64_t c)
{
    return ((x ^((x << 1) | c)) & (~x));
}

inline uint32_t bits::cnt01(uint64_t x, uint64_t& c)
{
    uint32_t res = cnt((x ^((x<<1) | c)) & x);
    c = (x >> 63);
    return res;
}
inline uint64_t bits::map01(uint64_t x, uint64_t c)
{
    return ((x ^((x << 1) | c)) &  x);
}

inline uint32_t bits::sel(uint64_t x, uint32_t i)
{
#ifdef __SSE4_2__
    uint64_t s = x, b;
    s = s-((s>>1) & 0x5555555555555555ULL);
    s = (s & 0x3333333333333333ULL) + ((s >> 2) & 0x3333333333333333ULL);
    s = (s + (s >> 4)) & 0x0F0F0F0F0F0F0F0FULL;
    s = 0x0101010101010101ULL*s;
// now s contains 8 bytes s[7],...,s[0]; s[j] contains the cumulative sum
// of (j+1)*8 least significant bits of s
    b = (s+ps_overflow[i]) & 0x8080808080808080ULL;
// ps_overflow contains a bit mask x consisting of 8 bytes
// x[7],...,x[0] and x[j] is set to 128-j
// => a byte b[j] in b is >= 128 if cum sum >= j

// __builtin_ctzll returns the number of trailing zeros, if b!=0
    int  byte_nr = __builtin_ctzll(b) >> 3;   // byte nr in [0..7]
    s <<= 8;
    i -= (s >> (byte_nr<<3)) & 0xFFULL;
    return (byte_nr << 3) + lt_sel[((i-1) << 8) + ((x>>(byte_nr<<3))&0xFFULL) ];
#endif
    return _sel(x, i);
}

inline uint32_t bits::_sel(uint64_t x, uint32_t i)
{
    uint64_t s = x, b;  // s = sum
    s = s-((s>>1) & 0x5555555555555555ULL);
    s = (s & 0x3333333333333333ULL) + ((s >> 2) & 0x3333333333333333ULL);
    s = (s + (s >> 4)) & 0x0F0F0F0F0F0F0F0FULL;
    s = 0x0101010101010101ULL*s;
    b = (s+ps_overflow[i]);//&0x8080808080808080ULL;// add something to the partial sums to cause overflow
    i = (i-1)<<8;
    if (b&0x0000000080000000ULL) // byte <=3
        if (b&0x0000000000008000ULL) //byte <= 1
            if (b&0x0000000000000080ULL)
                return    lt_sel[(x&0xFFULL) + i];
            else
                return 8 +lt_sel[(((x>>8)&0xFFULL)  + i - ((s&0xFFULL)<<8))&0x7FFULL];//byte 1;
        else//byte >1
            if (b&0x0000000000800000ULL) //byte <=2
                return 16+lt_sel[(((x>>16)&0xFFULL) + i - (s&0xFF00ULL))&0x7FFULL];//byte 2;
            else
                return 24+lt_sel[(((x>>24)&0xFFULL) + i - ((s>>8)&0xFF00ULL))&0x7FFULL];//byte 3;
    else//  byte > 3
        if (b&0x0000800000000000ULL) // byte <=5
            if (b&0x0000008000000000ULL) //byte <=4
                return 32+lt_sel[(((x>>32)&0xFFULL) + i - ((s>>16)&0xFF00ULL))&0x7FFULL];//byte 4;
            else
                return 40+lt_sel[(((x>>40)&0xFFULL) + i - ((s>>24)&0xFF00ULL))&0x7FFULL];//byte 5;
        else// byte >5
            if (b&0x0080000000000000ULL) //byte<=6
                return 48+lt_sel[(((x>>48)&0xFFULL) + i - ((s>>32)&0xFF00ULL))&0x7FFULL];//byte 6;
            else
                return 56+lt_sel[(((x>>56)&0xFFULL) + i - ((s>>40)&0xFF00ULL))&0x7FFULL];//byte 7;
    return 0;
}

// using built-in method or
// 64-bit version of 32-bit proposal of
// http://www-graphics.stanford.edu/~seander/bithacks.html
inline uint32_t bits::hi(uint64_t x)
{
#ifdef __SSE4_2__
    if (x == 0)
        return 0;
    return 63 - __builtin_clzll(x);
#else
    uint64_t t,tt; // temporaries
    if ((tt = x >> 32)) { // hi >= 32
        if ((t = tt >> 16)) { // hi >= 48
            return (tt = t >> 8) ? 56 + lt_hi[tt] : 48 + lt_hi[t];
        } else { // hi < 48
            return (t = tt >> 8) ? 40 + lt_hi[t] : 32 + lt_hi[tt];
        }
    } else { // hi < 32
        if ((t = x >> 16)) { // hi >= 16
            return (tt = t >> 8) ? 24 + lt_hi[tt] : 16 + lt_hi[t];
        } else { // hi < 16
            return (tt = x >> 8) ?  8 + lt_hi[tt] : lt_hi[x];
        }
    }
#endif
}

// details see: http://citeseer.ist.psu.edu/leiserson98using.html
// or page 10, Knuth TAOCP Vol 4 F1A
inline uint32_t bits::lo(uint64_t x)
{
#ifdef __SSE4_2__
    if (x==0)
        return 0;
    return __builtin_ctzll(x);
#else
    if (x&1) return 0;
    if (x&3) return 1;
    if (x&7) return 2;
    if (x&0x7F) { // in average every second random number x can be answered this way
        return lt_lo[(x&0x7F)>>3]+3;
    }
    // x&-x equals x with only the lsb set
    return lt_deBruijn_to_idx[((x&-x)*deBruijn64)>>58];
#endif
}

inline uint32_t bits::hi11(uint64_t x)
{
    // extract "11" 2bit blocks
    uint64_t ex11 = (x&(x>>1))&0x5555555555555555ULL;
    // extract "10" 2bit blocks
    uint64_t ex10or01 = (ex11|(ex11<<1))^x;
    // extract "10" 2bit blocks
    ex11 += (((ex11|(ex11<<1))+((ex10or01<<1)&0x5555555555555555ULL)) & ((ex10or01&0x5555555555555555ULL)|ex11));
    return hi(ex11);
}


inline uint32_t bits::sel11(uint64_t x, uint32_t i, uint32_t c)
{
    uint64_t ex11 = (x&(x>>1))&0x5555555555555555ULL;
    uint64_t ex10or01 = (ex11|(ex11<<1))^x;
    ex11 += (((ex11|(ex11<<1))+(((ex10or01<<1)&0x5555555555555555ULL)|c)) & ((ex10or01&0x5555555555555555ULL)|ex11));
    return sel(ex11,i);
}

inline void bits::write_int(uint64_t* word, uint64_t x, uint8_t offset, const uint8_t len)
{
    x &= bits::lo_set[len];
    if (offset + len < 64) {
        *word &=
            ((bits::all_set << (offset+len)) | bits::lo_set[offset]); // mask 1..10..01..1
        *word |= (x << offset);
//		*word ^= ((*word ^ x) & (bits::lo_set[len] << offset) );
//      surprisingly the above line is slower than the lines above
    } else {
        *word &=
            ((bits::lo_set[offset]));  // mask 0....01..1
        *word |= (x << offset);
        if ((offset = (offset+len)&0x3F)) { // offset+len > 64
            *(word+1) &= (~bits::lo_set[offset]); // mask 1...10..0
//			*(word+1) &= bits::lo_unset[offset]; // mask 1...10..0
//          surprisingly the above line is slower than the line above
            *(word+1) |= (x >> (len-offset));
        }
    }
}

inline void bits::write_int_and_move(uint64_t*& word, uint64_t x, uint8_t& offset, const uint8_t len)
{
    x &= bits::lo_set[len];
    if (offset + len < 64) {
        *word &=
            ((bits::all_set << (offset+len)) | bits::lo_set[offset]); // mask 1..10..01..1
        *word |= (x << offset);
        offset += len;
    } else {
        *word &=
            ((bits::lo_set[offset]));  // mask 0....01..1
        *word |= (x << offset);
        if ((offset= (offset+len))>64) {// offset+len >= 64
            offset &= 0x3F;
            *(++word) &= (~bits::lo_set[offset]); // mask 1...10..0
            *word |= (x >> (len-offset));
        } else {
            offset = 0;
            ++word;
        }
    }
}

inline uint64_t bits::read_int(const uint64_t* word, uint8_t offset, const uint8_t len)
{
    uint64_t w1 = (*word)>>offset;
    if ((offset+len) > 64) { // if offset+len > 64
        return w1 |  // w1 or w2 adepted:
               ((*(word+1) & bits::lo_set[(offset+len)&0x3F])   // set higher bits zero
                << (64-offset));  // move bits to the left
    } else {
        return w1 & bits::lo_set[len];
    }
}

inline uint64_t bits::read_int_and_move(const uint64_t*& word, uint8_t& offset, const uint8_t len)
{
    uint64_t w1 = (*word)>>offset;
    if ((offset = (offset+len))>=64) {  // if offset+len > 64
        if (offset==64) {
            offset &= 0x3F;
            ++word;
            return w1;
        } else {
            offset &= 0x3F;
            return w1 |
                   (((*(++word)) & bits::lo_set[offset]) << (len-offset));
        }
    } else {
        return w1 & bits::lo_set[len];
    }
}

inline uint64_t bits::read_unary(const uint64_t* word, uint8_t offset)
{
    uint64_t w = *word >> offset;
    if (w) {
        return bits::lo(w);
    } else {
        if (0!=(w=*(++word)))
            return bits::lo(w)+64-offset;
        uint64_t cnt=2;
        while (0==(w=*(++word)))
            ++cnt;
        return bits::lo(w)+(cnt<<6)-offset;
    }
    return 0;
}

inline uint64_t bits::read_unary_and_move(const uint64_t*& word, uint8_t& offset)
{
    uint64_t w = (*word) >> offset; // temporary variable is good for the performance
    if (w) {
        uint8_t r = bits::lo(w);
        offset = (offset + r+1)&0x3F;
        // we know that offset + r +1 <= 64, so if the new offset equals 0 increase word
        word += (offset==0);
        return r;
    } else {
        uint8_t rr=0;
        if (0!=(w=*(++word))) {
            rr = bits::lo(w)+64-offset;
            offset = (offset+rr+1)&0x3F;
            word += (offset==0);
            return rr;
        } else {
            uint64_t cnt_1=1;
            while (0==(w=*(++word)))
                ++cnt_1;
            rr = bits::lo(w)+64-offset;
            offset = (offset+rr+1)&0x3F;
            word += (offset==0);
            return ((cnt_1)<<6) + rr;
        }
    }
    return 0;
}

inline void bits::move_right(const uint64_t*& word, uint8_t& offset, const uint8_t len)
{
    if ((offset+=len)&0xC0) { // if offset >= 65
        offset&=0x3F;
        ++word;
    }
}

inline void bits::move_left(const uint64_t*& word, uint8_t& offset, const uint8_t len)
{
    if ((offset-=len)&0xC0) {  // if offset-len<0
        offset&=0x3F;
        --word;
    }
}

inline uint64_t bits::next(const uint64_t* word, uint64_t idx)
{
    word += (idx>>6);
    if (*word & ~lo_set[idx&0x3F]) {
        return (idx & ~((size_t)0x3F)) + lo(*word & ~lo_set[idx&0x3F]);
    }
    idx = (idx & ~((size_t)0x3F)) + 64;
    ++word;
    while (*word==0) {
        idx += 64;
        ++word;
    }
    return idx + lo(*word);
}

inline uint64_t bits::prev(const uint64_t* word, uint64_t idx)
{
    word += (idx>>6);
    if (*word & lo_set[(idx&0x3F)+1]) {
        return (idx & ~((size_t)0x3F)) + hi(*word & lo_set[(idx&0x3F)+1]);
    }
    idx = (idx & ~((size_t)0x3F)) - 64;
    --word;
    while (*word==0) {
        idx -= 64;
        --word;
    }
    return idx + hi(*word);
}

inline uint64_t bits::rev(uint64_t x)
{
    x = ((x & 0x5555555555555555ULL) << 1) | ((x & 0xAAAAAAAAAAAAAAAAULL) >> 1);
    x = ((x & 0x3333333333333333ULL) << 2) | ((x & 0xCCCCCCCCCCCCCCCCULL) >> 2);
    x = ((x & 0x0F0F0F0F0F0F0F0FULL) << 4) | ((x & 0xF0F0F0F0F0F0F0F0ULL) >> 4);
    x = ((x & 0x00FF00FF00FF00FFULL) << 8) | ((x & 0xFF00FF00FF00FF00ULL) >> 8);
    x = ((x & 0x0000FFFF0000FFFFULL) <<16) | ((x & 0xFFFF0000FFFF0000ULL) >>16);
    x = ((x & 0x00000000FFFFFFFFULL) <<32) | ((x & 0xFFFFFFFF00000000ULL) >>32);
    return x;
}

} // end namespace sdsl

#endif