This file is indexed.

/usr/include/ql/math/interpolations/lagrangeinterpolation.hpp is in libquantlib0-dev 1.12-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2016 Klaus Spanderen

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

#ifndef quantlib_lagrange_interpolation_hpp
#define quantlib_lagrange_interpolation_hpp

#include <ql/math/array.hpp>
#include <ql/math/interpolation.hpp>
#include <boost/make_shared.hpp>
#if defined(QL_EXTRA_SAFETY_CHECKS)
#include <set>
#endif

namespace QuantLib {
    /*! References: J-P. Berrut and L.N. Trefethen,
                    Barycentric Lagrange interpolation,
                    SIAM Review, 46(3):501–517, 2004.
        https://people.maths.ox.ac.uk/trefethen/barycentric.pdf
    */

    namespace detail {
        class UpdatedYInterpolation {
          public:
            virtual ~UpdatedYInterpolation() {}
            virtual Real value(const Array& yValues, Real x) const = 0;
        };

        template <class I1, class I2>
        class LagrangeInterpolationImpl
            : public Interpolation::templateImpl<I1,I2>,
              public UpdatedYInterpolation {

          public:
            LagrangeInterpolationImpl(const I1& xBegin, const I1& xEnd,
                                      const I2& yBegin)
            : Interpolation::templateImpl<I1,I2>(xBegin, xEnd, yBegin),
              n_(std::distance(xBegin, xEnd)),
              lambda_(n_) {
                #if defined(QL_EXTRA_SAFETY_CHECKS)
                QL_REQUIRE(std::set<Real>(xBegin, xEnd).size() == n_,
                        "x values must not contain duplicates");
                #endif
            }

            void update() {
                const Real cM1 = 4.0/(*(this->xEnd_-1) - *(this->xBegin_));

                for (Size i=0; i < n_; ++i) {
                    lambda_[i] = 1.0;

                    const Real x_i = this->xBegin_[i];
                    for (Size j=0; j < n_; ++j) {
                        if (i != j)
                            lambda_[i] *= cM1*(x_i-this->xBegin_[j]);
                    }
                    lambda_[i] = 1.0/lambda_[i];
                }
            }

            Real value(Real x) const {
                return _value(this->yBegin_, x);
            }

            Real derivative(Real x) const {
                Real n=0.0, d=0.0, nd=0.0, dd=0.0;
                for (Size i=0; i < n_; ++i) {
                    const Real x_i = this->xBegin_[i];

                    if (close_enough(x, x_i)) {
                        Real p=0.0;
                        for (Size j=0; j < n_; ++j)
                            if (i != j) {
                                p+=lambda_[j]/(x-this->xBegin_[j])
                                    *(this->yBegin_[j] - this->yBegin_[i]);
                            }
                        return p/lambda_[i];
                    }

                    const Real alpha = lambda_[i]/(x-x_i);
                    const Real alphad = -alpha/(x-x_i);
                    n += alpha * this->yBegin_[i];
                    d += alpha;
                    nd += alphad * this->yBegin_[i];
                    dd += alphad;
                }
                return (nd * d - n * dd)/(d*d);
            }

            Real primitive(Real) const {
                QL_FAIL("LagrangeInterpolation primitive is not implemented");
            }

            Real secondDerivative(Real) const {
                QL_FAIL("LagrangeInterpolation secondDerivative "
                        "is not implemented");
            }

            Real value(const Array& y, Real x) const {
                return _value(y.begin(), x);
            }

            private:
              template <class Iterator>
              Real _value(const Iterator& yBegin, Real x) const {
                  Real n=0.0, d=0.0;
                  for (Size i=0; i < n_; ++i) {
                      const Real x_i = this->xBegin_[i];
                      if (close_enough(x, x_i))
                          return yBegin[i];

                      const Real alpha = lambda_[i]/(x-x_i);
                      n += alpha * yBegin[i];
                      d += alpha;
                  }
                  return n/d;
              }

              const Size n_;
              Array lambda_;
        };
    }

    class LagrangeInterpolation : public Interpolation {
      public:
        template <class I1, class I2>
        LagrangeInterpolation(const I1& xBegin, const I1& xEnd,
                              const I2& yBegin) {
            impl_ = boost::make_shared<detail::LagrangeInterpolationImpl<I1,I2> >(
                xBegin, xEnd, yBegin);
            impl_->update();
        }

        // interpolate with new set of y values for a new x value
        Real value(const Array& y, Real x) const {
            return boost::dynamic_pointer_cast<detail::UpdatedYInterpolation>
                (impl_)->value(y, x);
        }
    };

}

#endif