This file is indexed.

/usr/include/ql/experimental/credit/interpolatedaffinehazardratecurve.hpp is in libquantlib0-dev 1.12-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2015 Jose Aparicio

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

#ifndef quantlib_interpolated_affine_hazard_rate_curve_hpp
#define quantlib_interpolated_affine_hazard_rate_curve_hpp

#include <ql/stochasticprocess.hpp>
#include <ql/experimental/credit/onefactoraffinesurvival.hpp>
#include <ql/termstructures/credit/probabilitytraits.hpp>
#include <ql/termstructures/interpolatedcurve.hpp>
#include <ql/termstructures/bootstraphelper.hpp>
#include <utility>

namespace QuantLib {

    /*! DefaultProbabilityTermStructure based on interpolation of a 
    deterministic hazard rate component plus a stochastic one factor 
    rate.
    */
    /*
    The hazard rate structure here refers to the deterministic term 
    structure added on top of the affine model intensity. It is typically
    employed to match the current market implied probabilities. The total
    probabilities keep their meaning and are those of the affine model. An
    example of this is the CIR++ model as employed in credit.

    (Although this is not usually the preferred way one can instead match the
    model to price the market.)

    Notice that here, hazardRateImpl(Time) returns the deterministic part of
    the hazard rate and not E[\lambda] This is what the bootstrapping
    requires but it might be confusing.

    \todo Redesign?:
    The Affine model type is meant to model short rates; most methods
    if not all still have sense here, though discounts mean probabilities.
    This is not satisfactory, the affine models might need more structure
    or reusing these classes should be reconsidered.
    \todo Implement forward default methods.
    \todo Implement statistics methods (expected values etc)

    */
    /*! \ingroup defaultprobabilitytermstructures */
    template <class Interpolator>
    class InterpolatedAffineHazardRateCurve
        : public OneFactorAffineSurvivalStructure,
          protected InterpolatedCurve<Interpolator> {
      public:
        InterpolatedAffineHazardRateCurve(
            const std::vector<Date>& dates,
            const std::vector<Rate>& hazardRates,
            const DayCounter& dayCounter,
            const boost::shared_ptr<OneFactorAffineModel> model,
            const Calendar& cal = Calendar(),
            const std::vector<Handle<Quote> >& jumps 
                = std::vector<Handle<Quote> >(),
            const std::vector<Date>& jumpDates = std::vector<Date>(),
            const Interpolator& interpolator = Interpolator());
        InterpolatedAffineHazardRateCurve(
            const std::vector<Date>& dates,
            const std::vector<Rate>& hazardRates,
            const DayCounter& dayCounter,
            const boost::shared_ptr<OneFactorAffineModel> model,
            const Calendar& calendar,
            const Interpolator& interpolator);
        InterpolatedAffineHazardRateCurve(
            const std::vector<Date>& dates,
            const std::vector<Rate>& hazardRates,
            const DayCounter& dayCounter,
            const boost::shared_ptr<OneFactorAffineModel> model,
            const Interpolator& interpolator);
        //! \name TermStructure interface
        //@{
        Date maxDate() const;
        //@}
        //! \name other inspectors
        //@{
        const std::vector<Time>& times() const;
        const std::vector<Date>& dates() const;
        const std::vector<Real>& data() const;
        const std::vector<Rate>& hazardRates() const;
        std::vector<std::pair<Date, Real> > nodes() const;
        //@}
      protected:
        InterpolatedAffineHazardRateCurve(
            const DayCounter&,
            const boost::shared_ptr<OneFactorAffineModel> model,
            const std::vector<Handle<Quote> >& jumps 
                = std::vector<Handle<Quote> >(),
            const std::vector<Date>& jumpDates = std::vector<Date>(),
            const Interpolator& interpolator = Interpolator());
        InterpolatedAffineHazardRateCurve(
            const Date& referenceDate,
            const DayCounter&,
            const boost::shared_ptr<OneFactorAffineModel> model,
            const std::vector<Handle<Quote> >& jumps 
                = std::vector<Handle<Quote> >(),
            const std::vector<Date>& jumpDates = std::vector<Date>(),
            const Interpolator& interpolator = Interpolator());
        InterpolatedAffineHazardRateCurve(
            Natural settlementDays,
            const Calendar&,
            const DayCounter&,
            const boost::shared_ptr<OneFactorAffineModel> model,
            const std::vector<Handle<Quote> >& jumps 
                = std::vector<Handle<Quote> >(),
            const std::vector<Date>& jumpDates = std::vector<Date>(),
            const Interpolator& interpolator = Interpolator());
        //! \name DefaultProbabilityTermStructure implementation
        //@{
        //! Returns the deterministic hazard rate component.
        Real hazardRateImpl(Time) const;
        Probability survivalProbabilityImpl(Time) const;
    public:
        using DefaultProbabilityTermStructure::hazardRate;
    protected:
        /*! Probability of default conditional to the realization of a given
        value of the stochastic part of the hazard rate at a prior time (and
        thus to survival at that time).
        \f$ P_{surv}(\tau>tTarget|F_{tFwd}) \f$
        */
        Probability conditionalSurvivalProbabilityImpl(Time tFwd, Time tTarget, 
            Real yVal) const;
        //@}
    protected:
        mutable std::vector<Date> dates_;
      private:
        void initialize();
    };


    namespace detail {
        // hazard rate compensation TS for affine models
        const Real minHazardRateComp = -1.0;
    }

    /*! Piecewise (deterministic) plus affine (stochastic) terms composed
        hazard rate
    */
    struct AffineHazardRate {
        // interpolated curve type
        template <class Interpolator>
        struct curve {
            typedef InterpolatedAffineHazardRateCurve<Interpolator> type;
        };
        // helper class
        typedef BootstrapHelper<DefaultProbabilityTermStructure> helper;

        // start of curve data
        static Date initialDate(const DefaultProbabilityTermStructure* c) {
            return c->referenceDate();
        }
        // dummy value at reference date
        static Real initialValue(const DefaultProbabilityTermStructure*) {
            return detail::avgHazardRate;
        }

        // guesses
        template <class C>
        static Real guess(Size i,
                          const C* c,
                          bool validData,
                          Size) // firstAliveHelper
        {
            if (validData) // previous iteration value
                return c->data()[i];

            if (i==1) // first pillar
                return 0.0001;
               // return detail::avgHazardRate;

            // extrapolate
            Date d = c->dates()[i];
            /* Uneasy about the naming: Here we are bootstrapping only the
             deterministic part of the intensity it might be a better idea to
             have a different naming when having these two components.
             What is meant here is the deterministic part of a ++model type
            */
            return c->hazardRate(d, true);
        }

        // constraints
        template <class C>
        static Real minValueAfter(Size i,
                                  const C* c,
                                  bool validData,
                                  Size) // firstAliveHelper
        {
            if (validData) {
                Real r = *(std::min_element(c->data().begin(),
                                            c->data().end()));
                return r/2.0;
            }
            return detail::minHazardRateComp;
            ///return QL_EPSILON;
        }
        template <class C>
        static Real maxValueAfter(Size i,
                                  const C* c,
                                  bool validData,
                                  Size) // firstAliveHelper
        {
            if (validData) {
                Real r = *(std::max_element(c->data().begin(),
                                            c->data().end()));
                return r*2.0;
            }
            // no constraints.
            // We choose as max a value very unlikely to be exceeded.
            return detail::maxHazardRate;
        }
        // update with new guess
        static void updateGuess(std::vector<Real>& data,
                                Real rate,
                                Size i) {
            data[i] = rate;
            if (i==1)
                data[0] = rate; // first point is updated as well
        }
        // upper bound for convergence loop
        static Size maxIterations() { return 30; }
    };


    // inline definitions

    template <class T>
    inline Date InterpolatedAffineHazardRateCurve<T>::maxDate() const {
        return dates_.back();
    }

    template <class T>
    inline const std::vector<Time>&
    InterpolatedAffineHazardRateCurve<T>::times() const {
        return this->times_;
    }

    template <class T>
    inline const std::vector<Date>&
    InterpolatedAffineHazardRateCurve<T>::dates() const {
        return dates_;
    }

    template <class T>
    inline const std::vector<Real>&
    InterpolatedAffineHazardRateCurve<T>::data() const {
        return this->data_;
    }

    template <class T>
    inline const std::vector<Rate>&
    InterpolatedAffineHazardRateCurve<T>::hazardRates() const {
        return this->data_;
    }

    template <class T>
    inline std::vector<std::pair<Date, Real> >
    InterpolatedAffineHazardRateCurve<T>::nodes() const {
        std::vector<std::pair<Date, Real> > results(dates_.size());
        for (Size i=0; i<dates_.size(); ++i)
            results[i] = std::make_pair(dates_[i], this->data_[i]);
        return results;
    }

    #ifndef __DOXYGEN__

    // template definitions

    template <class T>
    Real InterpolatedAffineHazardRateCurve<T>::hazardRateImpl(Time t) const {
        if (t <= this->times_.back())
            return this->interpolation_(t, true);

        // deterministic flat hazard rate extrapolation
        return this->data_.back();
    }

    // notice it is rewritten and no call is made to hazardRateImpl
    template <class T>
    Probability
    InterpolatedAffineHazardRateCurve<T>::survivalProbabilityImpl(
        Time t) const 
    {
        // the way x0 is defined:
        Real initValHR = std::pow(model_->dynamics()->process()->x0(), 2);

        if (t == 0.0)
            return model_->discountBond(0., t, initValHR);

        Real integral;
        if (t <= this->times_.back()) {
            integral = this->interpolation_.primitive(t, true);
        } else {
            // flat hazard rate extrapolation
            integral = 
                this->interpolation_.primitive(this->times_.back(), true)
                     + this->data_.back()*(t - this->times_.back());
        }
        return std::exp(-integral) * model_->discountBond(0., t, initValHR);
    }

    template <class T>
    Probability
    InterpolatedAffineHazardRateCurve<T>::conditionalSurvivalProbabilityImpl(
        Time tFwd, Time tTarget, Real yVal) const 
    {
        QL_REQUIRE(tFwd <= tTarget, "Probability time in the past.");
        // Still leaves the possibility of sending tFwd=0 and an yVal different
        //   to the initial conditions. In an abstract sense thats all right as
        //   long as it is seen as a zero probability scenario.
        #if defined(QL_EXTRA_SAFETY_CHECKS)
            QL_REQUIRE(tFwd > 0. || yVal == 
                model_->dynamics()->process()->x0(), 
                "Initial value different to process'.");
        #endif
        if (tFwd == 0.) return survivalProbabilityImpl(tTarget);
        if (tFwd - tTarget == 0.0)
            return 1.;

        Real integralTFwd, integralTP;
        if (tFwd <= this->times_.back()) {
            integralTFwd = this->interpolation_.primitive(tFwd, true);
        } else {
            // flat hazard rate extrapolation
            integralTFwd = 
                this->interpolation_.primitive(this->times_.back(), true)
                     + this->data_.back()*(tFwd - this->times_.back());
        }
        if (tTarget <= this->times_.back()) {
            integralTP = this->interpolation_.primitive(tTarget, true);
        } else {
            // flat hazard rate extrapolation
            integralTP = 
                this->interpolation_.primitive(this->times_.back(), true)
                     + this->data_.back()*(tTarget - this->times_.back());
        }

        return std::exp(-(integralTP-integralTFwd)) * 
            model_->discountBond(tFwd, tTarget, yVal );
    }

    template <class T>
    InterpolatedAffineHazardRateCurve<T>::InterpolatedAffineHazardRateCurve(
                                    const DayCounter& dayCounter,
            const boost::shared_ptr<OneFactorAffineModel> model,
                                    const std::vector<Handle<Quote> >& jumps,
                                    const std::vector<Date>& jumpDates,
                                    const T& interpolator)
    : OneFactorAffineSurvivalStructure(model, dayCounter, jumps, jumpDates),
      InterpolatedCurve<T>(interpolator) {}

    template <class T>
    InterpolatedAffineHazardRateCurve<T>::InterpolatedAffineHazardRateCurve(
                                    const Date& referenceDate,
                                    const DayCounter& dayCounter,
            const boost::shared_ptr<OneFactorAffineModel> model,
                                    const std::vector<Handle<Quote> >& jumps,
                                    const std::vector<Date>& jumpDates,
                                    const T& interpolator)
    : OneFactorAffineSurvivalStructure(model, referenceDate, Calendar(), 
        dayCounter, jumps, jumpDates),
      InterpolatedCurve<T>(interpolator) {}

    template <class T>
    InterpolatedAffineHazardRateCurve<T>::InterpolatedAffineHazardRateCurve(
                                    Natural settlementDays,
                                    const Calendar& calendar,
                                    const DayCounter& dayCounter,
            const boost::shared_ptr<OneFactorAffineModel> model,
                                    const std::vector<Handle<Quote> >& jumps,
                                    const std::vector<Date>& jumpDates,
                                    const T& interpolator)
    : OneFactorAffineSurvivalStructure(model, settlementDays, calendar, 
        dayCounter, jumps, jumpDates),
      InterpolatedCurve<T>(interpolator) {}

    template <class T>
    InterpolatedAffineHazardRateCurve<T>::InterpolatedAffineHazardRateCurve(
                                    const std::vector<Date>& dates,
                                    const std::vector<Rate>& hazardRates,
                                    const DayCounter& dayCounter,
            const boost::shared_ptr<OneFactorAffineModel> model,
                                    const Calendar& calendar,
                                    const std::vector<Handle<Quote> >& jumps,
                                    const std::vector<Date>& jumpDates,
                                    const T& interpolator)
    : OneFactorAffineSurvivalStructure(model, dates.at(0), calendar, 
        dayCounter, jumps, jumpDates),
      dates_(dates)
    {
        initialize();
    }

    template <class T>
    InterpolatedAffineHazardRateCurve<T>::InterpolatedAffineHazardRateCurve(
            const std::vector<Date>& dates,
            const std::vector<Rate>& hazardRates,
            const DayCounter& dayCounter,
            const boost::shared_ptr<OneFactorAffineModel> model,
            const Calendar& calendar,
            const T& interpolator)
    : OneFactorAffineSurvivalStructure(model, dates.at(0), calendar, 
        dayCounter),
      InterpolatedCurve<T>(std::vector<Time>(), hazardRates, interpolator),
      dates_(dates)
    {
        initialize();
    }

    template <class T>
    InterpolatedAffineHazardRateCurve<T>::InterpolatedAffineHazardRateCurve(
            const std::vector<Date>& dates,
            const std::vector<Rate>& hazardRates,
            const DayCounter& dayCounter,
            const boost::shared_ptr<OneFactorAffineModel> model,
            const T& interpolator)
    : OneFactorAffineSurvivalStructure(model, dates.at(0), Calendar(), 
        dayCounter),
      InterpolatedCurve<T>(std::vector<Time>(), hazardRates, interpolator),
      dates_(dates)
    {
        initialize();
    }

    template <class T>
    void InterpolatedAffineHazardRateCurve<T>::initialize()
    {
        QL_REQUIRE(dates_.size() >= T::requiredPoints,
                   "not enough input dates given");
        QL_REQUIRE(this->data_.size() == dates_.size(),
                   "dates/data count mismatch");

        this->times_.resize(dates_.size());
        this->times_[0] = 0.0;
        for (Size i=1; i<dates_.size(); ++i) {
            QL_REQUIRE(dates_[i] > dates_[i-1],
                       "invalid date (" << dates_[i] << ", vs "
                       << dates_[i-1] << ")");
            this->times_[i] = dayCounter().yearFraction(dates_[0], dates_[i]);
            QL_REQUIRE(!close(this->times_[i], this->times_[i-1]),
                       "two dates correspond to the same time "
                       "under this curve's day count convention");
            QL_REQUIRE(this->data_[i] >= 0.0, "negative hazard rate");
        }

        this->interpolation_ =
            this->interpolator_.interpolate(this->times_.begin(),
                                            this->times_.end(),
                                            this->data_.begin());
        this->interpolation_.update();
    }

    #endif

}

#endif