This file is indexed.

/usr/include/pynac/matrix.h is in libpynac-dev 0.7.12-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
/** @file matrix.h
 *
 *  Interface to symbolic matrices */

/*
 *  GiNaC Copyright (C) 1999-2008 Johannes Gutenberg University Mainz, Germany
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 */

#ifndef __GINAC_MATRIX_H__
#define __GINAC_MATRIX_H__

#include "basic.h"
#include "ex.h"

#include <vector>
#include <string>

namespace GiNaC {


/** Helper template to allow initialization of matrices via an overloaded
 *  comma operator (idea stolen from Blitz++). */
template <typename T, typename It>
class matrix_init {
public:
	matrix_init(It i) : iter(std::move(i)) {}

	matrix_init<T, It> operator,(const T & x)
	{
		*iter = x;
		return matrix_init<T, It>(++iter);
	}

	// The following specializations produce much tighter code than the
	// general case above

	matrix_init<T, It> operator,(int x)
	{
		*iter = T(x);
		return matrix_init<T, It>(++iter);
	}

	matrix_init<T, It> operator,(unsigned int x)
	{
		*iter = T(x);
		return matrix_init<T, It>(++iter);
	}

	matrix_init<T, It> operator,(long x)
	{
		*iter = T(x);
		return matrix_init<T, It>(++iter);
	}

	matrix_init<T, It> operator,(unsigned long x)
	{
		*iter = T(x);
		return matrix_init<T, It>(++iter);
	}

	matrix_init<T, It> operator,(double x)
	{
		*iter = T(x);
		return matrix_init<T, It>(++iter);
	}

	matrix_init<T, It> operator,(const symbol & x)
	{
		*iter = T(x);
		return matrix_init<T, It>(++iter);
	}

private:
	matrix_init();
	It iter;
};


/** Symbolic matrices. */
class matrix : public basic
{
	GINAC_DECLARE_REGISTERED_CLASS(matrix, basic)
	
	// other constructors
public:
	matrix(unsigned r, unsigned c);
	matrix(unsigned r, unsigned c, exvector  m2);
	matrix(unsigned r, unsigned c, const lst & l);

	// First step of initialization of matrix with a comma-separated seqeuence
	// of expressions. Subsequent steps are handled by matrix_init<>::operator,().
	matrix_init<ex, exvector::iterator> operator=(const ex & x)
	{
		m[0] = x;
		return matrix_init<ex, exvector::iterator>(++m.begin());
	}
	
	// functions overriding virtual functions from base classes
public:
	size_t nops() const override;
	const ex op(size_t i) const override;
	ex & let_op(size_t i) override;
	ex eval(int level=0) const override;
	ex evalm() const override {return *this;}
	ex subs(const exmap & m, unsigned options = 0) const override;
	ex conjugate() const override;
	ex real_part() const override;
	ex imag_part() const override;

protected:
	bool match_same_type(const basic & other) const override;
	unsigned return_type() const override { return return_types::noncommutative; };
	
	// non-virtual functions in this class
public:
	unsigned rows() const        /// Get number of rows.
		{ return row; }
	unsigned cols() const        /// Get number of columns.
		{ return col; }
	matrix add(const matrix & other) const;
	matrix sub(const matrix & other) const;
	matrix mul(const matrix & other) const;
	matrix mul(const numeric & other) const;
	matrix mul_scalar(const ex & other) const;
	matrix pow(const ex & expn) const;
	const ex & operator() (unsigned ro, unsigned co) const;
	ex & operator() (unsigned ro, unsigned co);
	matrix & set(unsigned ro, unsigned co, const ex & value) { (*this)(ro, co) = value; return *this; }
	matrix transpose() const;
	ex determinant(unsigned algo = determinant_algo::automatic) const;
	ex trace() const;
	ex charpoly(const ex & lambda) const;
	matrix inverse() const;
	matrix solve(const matrix & vars, const matrix & rhs,
	             unsigned algo = solve_algo::automatic) const;
	unsigned rank() const;
	bool is_zero_matrix() const;
protected:
	ex determinant_minor() const;
	int gauss_elimination(const bool det = false);
	int division_free_elimination(const bool det = false);
	int fraction_free_elimination(const bool det = false);
	int pivot(unsigned ro, unsigned co, bool symbolic = true);

	void print_elements(const print_context & c, const char *row_start, const char *row_end, const char *row_sep, const char *col_sep) const;
	void do_print(const print_context & c, unsigned level) const override;
	void do_print_latex(const print_latex & c, unsigned level) const;
	void do_print_python_repr(const print_python_repr & c, unsigned level) const override;
	
// member variables
protected:
	unsigned row;             ///< number of rows
	unsigned col;             ///< number of columns
	exvector m;               ///< representation (cols indexed first)
};


// wrapper functions around member functions

inline size_t nops(const matrix & m)
{ return m.nops(); }

inline ex expand(const matrix & m, unsigned options = 0)
{ return m.expand(options); }

inline ex eval(const matrix & m, int level = 0)
{ return m.eval(level); }

inline ex evalf(const matrix & m, int level = 0)
{ return m.evalf(level); }

inline unsigned rows(const matrix & m)
{ return m.rows(); }

inline unsigned cols(const matrix & m)
{ return m.cols(); }

inline matrix transpose(const matrix & m)
{ return m.transpose(); }

inline ex determinant(const matrix & m, unsigned options = determinant_algo::automatic)
{ return m.determinant(options); }

inline ex trace(const matrix & m)
{ return m.trace(); }

inline ex charpoly(const matrix & m, const ex & lambda)
{ return m.charpoly(lambda); }

inline matrix inverse(const matrix & m)
{ return m.inverse(); }

inline unsigned rank(const matrix & m)
{ return m.rank(); }

// utility functions

/** Convert list of lists to matrix. */
extern ex lst_to_matrix(const lst & l);

/** Convert list of diagonal elements to matrix. */
extern ex diag_matrix(const lst & l);

/** Create an r times c unit matrix. */
extern ex unit_matrix(unsigned r, unsigned c);

/** Create a x times x unit matrix. */
inline ex unit_matrix(unsigned x)
{ return unit_matrix(x, x); }

/** Create an r times c matrix of newly generated symbols consisting of the
 *  given base name plus the numeric row/column position of each element.
 *  The base name for LaTeX output is specified separately. */
extern ex symbolic_matrix(unsigned r, unsigned c, const std::string & base_name, const std::string & tex_base_name);

/** Return the reduced matrix that is formed by deleting the rth row and cth
 *  column of matrix m. The determinant of the result is the Minor r, c. */
extern ex reduced_matrix(const matrix& m, unsigned r, unsigned c);

/** Return the nr times nc submatrix starting at position r, c of matrix m. */
extern ex sub_matrix(const matrix&m, unsigned r, unsigned nr, unsigned c, unsigned nc);

/** Create an r times c matrix of newly generated symbols consisting of the
 *  given base name plus the numeric row/column position of each element. */
inline ex symbolic_matrix(unsigned r, unsigned c, const std::string & base_name)
{ return symbolic_matrix(r, c, base_name, base_name); }

} // namespace GiNaC

#endif // ndef __GINAC_MATRIX_H__