/usr/include/pynac/matrix.h is in libpynac-dev 0.7.12-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 | /** @file matrix.h
*
* Interface to symbolic matrices */
/*
* GiNaC Copyright (C) 1999-2008 Johannes Gutenberg University Mainz, Germany
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef __GINAC_MATRIX_H__
#define __GINAC_MATRIX_H__
#include "basic.h"
#include "ex.h"
#include <vector>
#include <string>
namespace GiNaC {
/** Helper template to allow initialization of matrices via an overloaded
* comma operator (idea stolen from Blitz++). */
template <typename T, typename It>
class matrix_init {
public:
matrix_init(It i) : iter(std::move(i)) {}
matrix_init<T, It> operator,(const T & x)
{
*iter = x;
return matrix_init<T, It>(++iter);
}
// The following specializations produce much tighter code than the
// general case above
matrix_init<T, It> operator,(int x)
{
*iter = T(x);
return matrix_init<T, It>(++iter);
}
matrix_init<T, It> operator,(unsigned int x)
{
*iter = T(x);
return matrix_init<T, It>(++iter);
}
matrix_init<T, It> operator,(long x)
{
*iter = T(x);
return matrix_init<T, It>(++iter);
}
matrix_init<T, It> operator,(unsigned long x)
{
*iter = T(x);
return matrix_init<T, It>(++iter);
}
matrix_init<T, It> operator,(double x)
{
*iter = T(x);
return matrix_init<T, It>(++iter);
}
matrix_init<T, It> operator,(const symbol & x)
{
*iter = T(x);
return matrix_init<T, It>(++iter);
}
private:
matrix_init();
It iter;
};
/** Symbolic matrices. */
class matrix : public basic
{
GINAC_DECLARE_REGISTERED_CLASS(matrix, basic)
// other constructors
public:
matrix(unsigned r, unsigned c);
matrix(unsigned r, unsigned c, exvector m2);
matrix(unsigned r, unsigned c, const lst & l);
// First step of initialization of matrix with a comma-separated seqeuence
// of expressions. Subsequent steps are handled by matrix_init<>::operator,().
matrix_init<ex, exvector::iterator> operator=(const ex & x)
{
m[0] = x;
return matrix_init<ex, exvector::iterator>(++m.begin());
}
// functions overriding virtual functions from base classes
public:
size_t nops() const override;
const ex op(size_t i) const override;
ex & let_op(size_t i) override;
ex eval(int level=0) const override;
ex evalm() const override {return *this;}
ex subs(const exmap & m, unsigned options = 0) const override;
ex conjugate() const override;
ex real_part() const override;
ex imag_part() const override;
protected:
bool match_same_type(const basic & other) const override;
unsigned return_type() const override { return return_types::noncommutative; };
// non-virtual functions in this class
public:
unsigned rows() const /// Get number of rows.
{ return row; }
unsigned cols() const /// Get number of columns.
{ return col; }
matrix add(const matrix & other) const;
matrix sub(const matrix & other) const;
matrix mul(const matrix & other) const;
matrix mul(const numeric & other) const;
matrix mul_scalar(const ex & other) const;
matrix pow(const ex & expn) const;
const ex & operator() (unsigned ro, unsigned co) const;
ex & operator() (unsigned ro, unsigned co);
matrix & set(unsigned ro, unsigned co, const ex & value) { (*this)(ro, co) = value; return *this; }
matrix transpose() const;
ex determinant(unsigned algo = determinant_algo::automatic) const;
ex trace() const;
ex charpoly(const ex & lambda) const;
matrix inverse() const;
matrix solve(const matrix & vars, const matrix & rhs,
unsigned algo = solve_algo::automatic) const;
unsigned rank() const;
bool is_zero_matrix() const;
protected:
ex determinant_minor() const;
int gauss_elimination(const bool det = false);
int division_free_elimination(const bool det = false);
int fraction_free_elimination(const bool det = false);
int pivot(unsigned ro, unsigned co, bool symbolic = true);
void print_elements(const print_context & c, const char *row_start, const char *row_end, const char *row_sep, const char *col_sep) const;
void do_print(const print_context & c, unsigned level) const override;
void do_print_latex(const print_latex & c, unsigned level) const;
void do_print_python_repr(const print_python_repr & c, unsigned level) const override;
// member variables
protected:
unsigned row; ///< number of rows
unsigned col; ///< number of columns
exvector m; ///< representation (cols indexed first)
};
// wrapper functions around member functions
inline size_t nops(const matrix & m)
{ return m.nops(); }
inline ex expand(const matrix & m, unsigned options = 0)
{ return m.expand(options); }
inline ex eval(const matrix & m, int level = 0)
{ return m.eval(level); }
inline ex evalf(const matrix & m, int level = 0)
{ return m.evalf(level); }
inline unsigned rows(const matrix & m)
{ return m.rows(); }
inline unsigned cols(const matrix & m)
{ return m.cols(); }
inline matrix transpose(const matrix & m)
{ return m.transpose(); }
inline ex determinant(const matrix & m, unsigned options = determinant_algo::automatic)
{ return m.determinant(options); }
inline ex trace(const matrix & m)
{ return m.trace(); }
inline ex charpoly(const matrix & m, const ex & lambda)
{ return m.charpoly(lambda); }
inline matrix inverse(const matrix & m)
{ return m.inverse(); }
inline unsigned rank(const matrix & m)
{ return m.rank(); }
// utility functions
/** Convert list of lists to matrix. */
extern ex lst_to_matrix(const lst & l);
/** Convert list of diagonal elements to matrix. */
extern ex diag_matrix(const lst & l);
/** Create an r times c unit matrix. */
extern ex unit_matrix(unsigned r, unsigned c);
/** Create a x times x unit matrix. */
inline ex unit_matrix(unsigned x)
{ return unit_matrix(x, x); }
/** Create an r times c matrix of newly generated symbols consisting of the
* given base name plus the numeric row/column position of each element.
* The base name for LaTeX output is specified separately. */
extern ex symbolic_matrix(unsigned r, unsigned c, const std::string & base_name, const std::string & tex_base_name);
/** Return the reduced matrix that is formed by deleting the rth row and cth
* column of matrix m. The determinant of the result is the Minor r, c. */
extern ex reduced_matrix(const matrix& m, unsigned r, unsigned c);
/** Return the nr times nc submatrix starting at position r, c of matrix m. */
extern ex sub_matrix(const matrix&m, unsigned r, unsigned nr, unsigned c, unsigned nc);
/** Create an r times c matrix of newly generated symbols consisting of the
* given base name plus the numeric row/column position of each element. */
inline ex symbolic_matrix(unsigned r, unsigned c, const std::string & base_name)
{ return symbolic_matrix(r, c, base_name, base_name); }
} // namespace GiNaC
#endif // ndef __GINAC_MATRIX_H__
|