/usr/include/pynac/ex.h is in libpynac-dev 0.7.12-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 | /** @file ex.h
*
* Interface to GiNaC's light-weight expression handles. */
/*
* GiNaC Copyright (C) 1999-2008 Johannes Gutenberg University Mainz, Germany
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef __GINAC_EX_H__
#define __GINAC_EX_H__
#include "basic.h"
#include "ptr.h"
#include <iosfwd>
#include <iterator>
#include <functional>
#include <stack>
#include <unordered_set>
class CanonicalForm;
namespace GiNaC {
#ifdef _MSC_VER
// MSVC produces a different symbol for _ex0 when it is declared inside
// ex::is_zero() than when it is declared at top level as follows
extern const ex _ex0;
#endif
/** Helper class to initialize the library. There must be one static object
* of this class in every object file that makes use of our flyweights in
* order to guarantee proper initialization. Hence we put it into this
* file which is included by every relevant file anyways. This is modeled
* after section 27.4.2.1.6 of the C++ standard, where cout and friends are
* set up.
*
* @see utils.cpp */
class library_init {
public:
library_init();
~library_init();
private:
static int count;
};
/** For construction of flyweights, etc. */
static library_init library_initializer;
/** Rotate bits of unsigned value by one bit to the left.
* This can be necesary if the user wants to define its own hashes. */
inline unsigned rotate_left(unsigned n)
{
return (n & 0x80000000U) ? (n << 1 | 0x00000001U) : (n << 1);
}
class scalar_products;
class const_iterator;
class const_preorder_iterator;
class const_postorder_iterator;
class symbol;
struct symbolhasher;
using symbolset = std::unordered_set<symbol,symbolhasher>;
using expairvec = std::vector<std::pair<ex,ex>>;
using ocvector = std::vector<numeric>;
using power_ocvector_map = std::map<ex, ocvector, GiNaC::ex_is_less>;
/** Lightweight wrapper for GiNaC's symbolic objects. It holds a pointer to
* the other object in order to do garbage collection by the method of
* reference counting. I.e., it is a smart pointer. Also, the constructor
* ex::ex(const basic & other) calls the methods that do automatic
* evaluation. E.g., x-x turns automatically into 0. */
class ex {
friend class archive_node;
friend inline bool are_ex_trivially_equal(const ex &, const ex &);
template<class T> friend inline const T &ex_to(const ex &);
template<class T> friend inline bool is_a(const ex &);
template<class T> friend inline bool is_exactly_a(const ex &);
friend class print_order;
friend class print_order_mul;
friend class print_order_pair;
// default constructor, copy constructor and assignment operator
public:
ex() throw();
// other constructors
public:
ex(const basic & other);
ex(int i);
ex(unsigned int i);
ex(long i);
ex(double const d);
ex(PyObject* o);
/** Construct ex from string and a list of symbols. The input grammar is
* similar to the GiNaC output format. All symbols and indices to be used
* in the expression must be specified in a lst in the second argument.
* Undefined symbols and other parser errors will throw an exception. */
ex(const std::string &s, const ex &l);
public:
// non-virtual functions in this class
public:
/** Efficiently swap the contents of two expressions. */
void swap(ex & other) throw()
{
GINAC_ASSERT(bp->flags & status_flags::dynallocated);
GINAC_ASSERT(other.bp->flags & status_flags::dynallocated);
bp.swap(other.bp);
}
// iterators
const_iterator begin() const throw();
const_iterator end() const throw();
const_preorder_iterator preorder_begin() const;
const_preorder_iterator preorder_end() const throw();
const_postorder_iterator postorder_begin() const;
const_postorder_iterator postorder_end() const throw();
// evaluation
ex eval(int level = 0) const { return bp->eval(level); }
ex evalf(int level = 0, PyObject* parent=nullptr) const
{ return bp->evalf(level, parent); }
// printing
void print(const print_context & c, unsigned level = 0) const;
void dbgprint() const;
void dbgprinttree() const;
// info
bool info(unsigned inf) const { return bp->info(inf); }
// operand access
size_t nops() const { return bp->nops(); }
size_t nsymbols() const;
bool get_first_symbol(ex &x) const;
symbolset symbols() const;
symbolset free_symbols() const;
const ex op(size_t i) const { return bp->op(i); }
ex sorted_op(size_t i) const;
ex operator[](const ex & index) const { return (*bp)[index]; }
ex operator[](size_t i) const { return (*bp)[i]; }
ex & let_op(size_t i);
ex & operator[](const ex & index);
ex & operator[](size_t i);
ex lhs() const;
ex rhs() const;
// function for complex expressions
ex conjugate() const { return bp->conjugate(); }
ex real_part() const { return bp->real_part(); }
ex imag_part() const { return bp->imag_part(); }
// pattern matching
bool has(const ex & pattern, unsigned options = 0) const { return bp->has(pattern, options); }
bool find(const ex & pattern, lst & found) const;
bool match(const ex & pattern) const;
bool match(const ex & pattern, lst & repl_lst) const { return bp->match(pattern, repl_lst); }
// substitutions
ex subs(const exmap & m, unsigned options = 0) const
{ return bp->subs(m, options); }
ex subs(const lst & ls, const lst & lr, unsigned options = 0) const;
ex subs(const ex & e, unsigned options = 0) const;
// function mapping
ex map(map_function & f) const { return bp->map(f); }
ex map(ex (*f)(const ex & e)) const;
// visitors and tree traversal
void accept(visitor & v) const { bp->accept(v); }
void traverse_preorder(visitor & v) const;
void traverse_postorder(visitor & v) const;
void traverse(visitor & v) const { traverse_preorder(v); }
// degree/coeff
bool is_polynomial(const ex & vars) const;
numeric degree(const ex & s) const;
numeric ldegree(const ex & s) const;
ex coeff(const ex & s, const ex & n) const { return bp->coeff(s, n); }
ex lcoeff(const ex & s) const;
ex tcoeff(const ex & s) const;
void coefficients(const ex & s, expairvec & vec) const;
// expand/collect
ex expand(unsigned options=0) const;
ex collect(const ex & s, bool distributed = false) const { return bp->collect(s, distributed); }
// differentiation and series expansion
ex diff(const symbol & s, unsigned nth = 1) const;
ex series(const ex & r, int order, unsigned options = 0) const;
void useries(flint_series_t& fp, int order) const { return bp->useries(fp, order); }
// rational functions
ex normal(int level = 0, bool noexpand_combined=false,
bool noexpand_numer=true) const;
ex to_rational(exmap & repl) const;
ex to_rational(lst & repl_lst) const;
ex to_polynomial(exmap & repl) const;
ex to_polynomial(lst & repl_lst) const;
#ifdef PYNAC_HAVE_LIBGIAC
const giac::polynome to_polynome(ex_int_map& map, exvector& revmap) const;
#endif
const CanonicalForm to_canonical(ex_int_map& map,
power_ocvector_map& pomap, exvector& revmap) const;
void collect_powers(power_ocvector_map& pomap) const;
ex numer() const;
ex denom() const;
ex numer_denom() const;
ex combine_fractions(bool deep=true) const;
// polynomial algorithms
ex unit(const ex &x) const;
ex content(const ex &x) const;
numeric integer_content() const;
ex primpart(const ex &x) const;
ex primpart(const ex &x, const ex &cont) const;
void unitcontprim(const ex &x, ex &u, ex &c, ex &p) const;
ex smod(const numeric &xi) const { return bp->smod(xi); }
numeric max_coefficient() const;
bool is_linear(const symbol& x, ex& a, ex& b) const;
bool is_quadratic(const symbol& x, ex& a, ex& b, ex& c) const;
// domains
void set_domain(unsigned d);
// comparison
int compare(const ex & other) const;
bool is_equal(const ex & other) const;
bool is_zero() const;
bool is_integer_one() const;
bool is_integer_pmone() const;
// symmetry
ex symmetrize() const;
ex symmetrize(const lst & l) const;
ex antisymmetrize() const;
ex antisymmetrize(const lst & l) const;
ex symmetrize_cyclic() const;
ex symmetrize_cyclic(const lst & l) const;
// noncommutativity
unsigned return_type() const { return bp->return_type(); }
tinfo_t return_type_tinfo() const { return bp->return_type_tinfo(); }
long gethash() const { return bp->gethash(); }
private:
static ptr<basic> construct_from_basic(const basic & other);
static basic & construct_from_int(int i);
static basic & construct_from_pyobject(PyObject* o);
static basic & construct_from_uint(unsigned int i);
static basic & construct_from_long(long i);
static basic & construct_from_double(double d);
static ptr<basic> construct_from_string_and_lst(const std::string &s, const ex &l);
void makewriteable();
void share(const ex & other) const;
static ex deep_combine_fractions(ex e);
struct combine_map_function : public map_function {
ex operator()(const ex & e) override { return deep_combine_fractions(e); }
};
// member variables
private:
mutable ptr<basic> bp; ///< pointer to basic object managed by this
};
// performance-critical inlined method implementations
// This needs to be a basic* because we don't know that numeric is derived
// from basic and we need a basic& for the ex default constructor
extern const basic *_num0_bp;
inline
ex::ex() throw() : bp(*const_cast<basic *>(_num0_bp))
{
GINAC_ASSERT(bp->flags & status_flags::dynallocated);
}
inline
ex::ex(const basic & other) : bp(construct_from_basic(other))
{
GINAC_ASSERT(bp->flags & status_flags::dynallocated);
}
inline
ex::ex(int i) : bp(construct_from_int(i))
{
GINAC_ASSERT(bp->flags & status_flags::dynallocated);
}
inline
ex::ex(PyObject* o) : bp(construct_from_pyobject(o))
{
GINAC_ASSERT(bp->flags & status_flags::dynallocated);
}
inline
ex::ex(unsigned int i) : bp(construct_from_uint(i))
{
GINAC_ASSERT(bp->flags & status_flags::dynallocated);
}
inline
ex::ex(long i) : bp(construct_from_long(i))
{
GINAC_ASSERT(bp->flags & status_flags::dynallocated);
}
inline
ex::ex(double const d) : bp(construct_from_double(d))
{
GINAC_ASSERT(bp->flags & status_flags::dynallocated);
}
inline
ex::ex(const std::string &s, const ex &l) : bp(construct_from_string_and_lst(s, l))
{
GINAC_ASSERT(bp->flags & status_flags::dynallocated);
}
// Iterators
class const_iterator : public std::iterator<std::random_access_iterator_tag, ex, ptrdiff_t, const ex *, const ex &> {
friend class ex;
friend class const_preorder_iterator;
friend class const_postorder_iterator;
public:
const_iterator() throw() {}
private:
const_iterator(ex e_, size_t i_) throw() : e(std::move(e_)), i(i_) {}
public:
// This should return an ex&, but that would be a reference to a
// temporary value
ex operator*() const
{
return e.op(i);
}
// This should return an ex*, but that would be a pointer to a
// temporary value
std::unique_ptr<ex> operator->() const
{
return std::unique_ptr<ex>(new ex(operator*()));
}
ex operator[](difference_type n) const
{
return e.op(i + n);
}
const_iterator &operator++() throw()
{
++i;
return *this;
}
const_iterator operator++(int) throw()
{
const_iterator tmp = *this;
++i;
return tmp;
}
const_iterator &operator+=(difference_type n) throw()
{
i += n;
return *this;
}
const_iterator operator+(difference_type n) const throw()
{
return const_iterator(e, i + n);
}
inline friend const_iterator operator+(difference_type n, const const_iterator &it) throw()
{
return const_iterator(it.e, it.i + n);
}
const_iterator &operator--() throw()
{
--i;
return *this;
}
const_iterator operator--(int) throw()
{
const_iterator tmp = *this;
--i;
return tmp;
}
const_iterator &operator-=(difference_type n) throw()
{
i -= n;
return *this;
}
const_iterator operator-(difference_type n) const throw()
{
return const_iterator(e, i - n);
}
inline friend difference_type operator-(const const_iterator &lhs, const const_iterator &rhs) throw()
{
return lhs.i - rhs.i;
}
bool operator==(const const_iterator &other) const throw()
{
return are_ex_trivially_equal(e, other.e) && i == other.i;
}
bool operator!=(const const_iterator &other) const throw()
{
return !(*this == other);
}
bool operator<(const const_iterator &other) const throw()
{
return i < other.i;
}
bool operator>(const const_iterator &other) const throw()
{
return other < *this;
}
bool operator<=(const const_iterator &other) const throw()
{
return !(other < *this);
}
bool operator>=(const const_iterator &other) const throw()
{
return !(*this < other);
}
protected:
ex e; // this used to be a "const basic *", but in view of object fusion that wouldn't be safe
size_t i;
};
namespace internal {
struct _iter_rep {
_iter_rep(ex e_, size_t i_, size_t i_end_) : e(std::move(e_)), i(i_), i_end(i_end_) {}
bool operator==(const _iter_rep &other) const throw()
{
return are_ex_trivially_equal(e, other.e) && i == other.i;
}
bool operator!=(const _iter_rep &other) const throw()
{
return !(*this == other);
}
ex e;
size_t i;
size_t i_end;
};
} // namespace internal
class const_preorder_iterator : public std::iterator<std::forward_iterator_tag, ex, ptrdiff_t, const ex *, const ex &> {
public:
const_preorder_iterator() throw() {}
const_preorder_iterator(const ex &e, size_t n)
{
s.push(internal::_iter_rep(e, 0, n));
}
public:
reference operator*() const
{
return s.top().e;
}
pointer operator->() const
{
return &(s.top().e);
}
const_preorder_iterator &operator++()
{
increment();
return *this;
}
const_preorder_iterator operator++(int)
{
const_preorder_iterator tmp = *this;
increment();
return tmp;
}
bool operator==(const const_preorder_iterator &other) const throw()
{
return s == other.s;
}
bool operator!=(const const_preorder_iterator &other) const throw()
{
return !(*this == other);
}
private:
std::stack<internal::_iter_rep, std::vector<internal::_iter_rep> > s;
void increment()
{
while (!s.empty() && s.top().i == s.top().i_end) {
s.pop();
if (s.empty())
return;
++s.top().i;
}
internal::_iter_rep & current = s.top();
if (current.i != current.i_end) {
const ex & child = current.e.op(current.i);
s.push(internal::_iter_rep(child, 0, child.nops()));
}
}
};
class const_postorder_iterator : public std::iterator<std::forward_iterator_tag, ex, ptrdiff_t, const ex *, const ex &> {
public:
const_postorder_iterator() throw() {}
const_postorder_iterator(const ex &e, size_t n)
{
s.push(internal::_iter_rep(e, 0, n));
descend();
}
public:
reference operator*() const
{
return s.top().e;
}
pointer operator->() const
{
return &(s.top().e);
}
const_postorder_iterator &operator++()
{
increment();
return *this;
}
const_postorder_iterator operator++(int)
{
const_postorder_iterator tmp = *this;
increment();
return tmp;
}
bool operator==(const const_postorder_iterator &other) const throw()
{
return s == other.s;
}
bool operator!=(const const_postorder_iterator &other) const throw()
{
return !(*this == other);
}
private:
std::stack<internal::_iter_rep, std::vector<internal::_iter_rep> > s;
void descend()
{
while (s.top().i != s.top().i_end) {
internal::_iter_rep & current = s.top();
const ex & child = current.e.op(current.i);
s.push(internal::_iter_rep(child, 0, child.nops()));
}
}
void increment()
{
if (s.top().i == s.top().i_end)
s.pop();
if (!s.empty()) {
++s.top().i;
descend();
}
}
};
inline const_iterator ex::begin() const throw()
{
return const_iterator(*this, 0);
}
inline const_iterator ex::end() const throw()
{
return const_iterator(*this, nops());
}
inline const_preorder_iterator ex::preorder_begin() const
{
return const_preorder_iterator(*this, nops());
}
inline const_preorder_iterator ex::preorder_end() const throw()
{
return const_preorder_iterator();
}
inline const_postorder_iterator ex::postorder_begin() const
{
return const_postorder_iterator(*this, nops());
}
inline const_postorder_iterator ex::postorder_end() const throw()
{
return const_postorder_iterator();
}
/** Compare two objects of class quickly without doing a deep tree traversal.
* @return "true" if they are equal
* "false" if equality cannot be established quickly (e1 and e2 may
* still be equal, in this case. */
inline bool are_ex_trivially_equal(const ex &e1, const ex &e2)
{
return e1.bp == e2.bp;
}
// Make it possible to print exvectors and exmaps
std::ostream & operator<<(std::ostream & os, const exvector & e);
std::ostream & operator<<(std::ostream & os, const exset & e);
std::ostream & operator<<(std::ostream & os, const exmap & e);
/* Function objects for STL sort() etc. */
struct ex_is_less : public std::binary_function<ex, ex, bool> {
bool operator() (const ex &lh, const ex &rh) const { return lh.compare(rh) < 0; }
};
struct ex_is_equal : public std::binary_function<ex, ex, bool> {
bool operator() (const ex &lh, const ex &rh) const { return lh.is_equal(rh); }
};
struct op0_is_equal : public std::binary_function<ex, ex, bool> {
bool operator() (const ex &lh, const ex &rh) const { return lh.op(0).is_equal(rh.op(0)); }
};
struct ex_swap : public std::binary_function<ex, ex, void> {
void operator() (ex &lh, ex &rh) const { lh.swap(rh); }
};
/* Convert function pointer to function object suitable for map(). */
class pointer_to_map_function : public map_function {
protected:
ex (*ptr)(const ex &);
public:
explicit pointer_to_map_function(ex x(const ex &)) : ptr(x) {}
ex operator()(const ex & e) override { return ptr(e); }
};
template<class T1>
class pointer_to_map_function_1arg : public map_function {
protected:
ex (*ptr)(const ex &, T1);
T1 arg1;
public:
explicit pointer_to_map_function_1arg(ex x(const ex &, T1), T1 a1) : ptr(x), arg1(a1) {}
ex operator()(const ex & e) override { return ptr(e, arg1); }
};
template<class T1, class T2>
class pointer_to_map_function_2args : public map_function {
protected:
ex (*ptr)(const ex &, T1, T2);
T1 arg1;
T2 arg2;
public:
explicit pointer_to_map_function_2args(ex x(const ex &, T1, T2), T1 a1, T2 a2) : ptr(x), arg1(a1), arg2(a2) {}
ex operator()(const ex & e) override { return ptr(e, arg1, arg2); }
};
template<class T1, class T2, class T3>
class pointer_to_map_function_3args : public map_function {
protected:
ex (*ptr)(const ex &, T1, T2, T3);
T1 arg1;
T2 arg2;
T3 arg3;
public:
explicit pointer_to_map_function_3args(ex x(const ex &, T1, T2, T3), T1 a1, T2 a2, T3 a3) : ptr(x), arg1(a1), arg2(a2), arg3(a3) {}
ex operator()(const ex & e) override { return ptr(e, arg1, arg2, arg3); }
};
template<class C>
class pointer_to_member_to_map_function : public map_function {
protected:
ex (C::*ptr)(const ex &);
C &c;
public:
explicit pointer_to_member_to_map_function(ex (C::*member)(const ex &), C &obj) : ptr(member), c(obj) {}
ex operator()(const ex & e) override { return (c.*ptr)(e); }
};
template<class C, class T1>
class pointer_to_member_to_map_function_1arg : public map_function {
protected:
ex (C::*ptr)(const ex &, T1);
C &c;
T1 arg1;
public:
explicit pointer_to_member_to_map_function_1arg(ex (C::*member)(const ex &, T1), C &obj, T1 a1) : ptr(member), c(obj), arg1(a1) {}
ex operator()(const ex & e) override { return (c.*ptr)(e, arg1); }
};
template<class C, class T1, class T2>
class pointer_to_member_to_map_function_2args : public map_function {
protected:
ex (C::*ptr)(const ex &, T1, T2);
C &c;
T1 arg1;
T2 arg2;
public:
explicit pointer_to_member_to_map_function_2args(ex (C::*member)(const ex&, T1, T2), C &obj, T1 a1, T2 a2) : ptr(member), c(obj), arg1(a1), arg2(a2) {}
ex operator()(const ex & e) override { return (c.*ptr)(e, arg1, arg2); }
};
template<class C, class T1, class T2, class T3>
class pointer_to_member_to_map_function_3args : public map_function {
protected:
ex (C::*ptr)(const ex &, T1, T2, T3);
C &c;
T1 arg1;
T2 arg2;
T3 arg3;
public:
explicit pointer_to_member_to_map_function_3args(ex (C::*member)(const ex &, T1, T2, T3), C &obj, T1 a1, T2 a2, T3 a3) : ptr(member), c(obj), arg1(a1), arg2(a2), arg3(a3) {}
ex operator()(const ex & e) override { return (c.*ptr)(e, arg1, arg2, arg3); }
};
inline ex ex::map(ex f(const ex &)) const
{
pointer_to_map_function fcn(f);
return bp->map(fcn);
}
// convenience type checker template functions
/** Check if ex is a handle to a T, including base classes. */
template <class T>
inline bool is_a(const ex &obj)
{
return is_a<T>(*obj.bp);
}
/** Check if ex is a handle to a T, not including base classes. */
template <class T>
inline bool is_exactly_a(const ex &obj)
{
return is_exactly_a<T>(*obj.bp);
}
/** Return a reference to the basic-derived class T object embedded in an
* expression. This is fast but unsafe: the result is undefined if the
* expression does not contain a T object at its top level. Hence, you
* should generally check the type of e first. Also, you shouldn't cache
* the returned reference because GiNaC's garbage collector may destroy
* the referenced object any time it's used in another expression.
*
* @param e expression
* @return reference to object of class T
* @see is_exactly_a<class T>() */
template <class T>
inline const T &ex_to(const ex &e)
{
GINAC_ASSERT(is_a<T>(e));
return static_cast<const T &>(*e.bp);
}
} // namespace GiNaC
#endif // ndef __GINAC_EX_H__
|