This file is indexed.

/usr/include/pynac/ex.h is in libpynac-dev 0.7.12-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
/** @file ex.h
 *
 *  Interface to GiNaC's light-weight expression handles. */

/*
 *  GiNaC Copyright (C) 1999-2008 Johannes Gutenberg University Mainz, Germany
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 */

#ifndef __GINAC_EX_H__
#define __GINAC_EX_H__

#include "basic.h"
#include "ptr.h"

#include <iosfwd>
#include <iterator>
#include <functional>
#include <stack>
#include <unordered_set>

class CanonicalForm;

namespace GiNaC {
#ifdef _MSC_VER
  // MSVC produces a different symbol for _ex0 when it is declared inside   
  // ex::is_zero() than when it is declared at top level as follows
  extern const ex _ex0;
#endif


/** Helper class to initialize the library.  There must be one static object
 *  of this class in every object file that makes use of our flyweights in
 *  order to guarantee proper initialization.  Hence we put it into this
 *  file which is included by every relevant file anyways.  This is modeled
 *  after section 27.4.2.1.6 of the C++ standard, where cout and friends are
 *  set up.
 *
 *  @see utils.cpp */
class library_init {
public:
	library_init();
	~library_init();
private:
	static int count;
};
/** For construction of flyweights, etc. */
static library_init library_initializer;

/** Rotate bits of unsigned value by one bit to the left.
  * This can be necesary if the user wants to define its own hashes. */
inline unsigned rotate_left(unsigned n)
{
	return (n & 0x80000000U) ? (n << 1 | 0x00000001U) : (n << 1);
}

class scalar_products;
class const_iterator;
class const_preorder_iterator;
class const_postorder_iterator;
class symbol;
struct symbolhasher;
using symbolset = std::unordered_set<symbol,symbolhasher>;
using expairvec = std::vector<std::pair<ex,ex>>;
using ocvector = std::vector<numeric>;
using power_ocvector_map = std::map<ex, ocvector, GiNaC::ex_is_less>;

/** Lightweight wrapper for GiNaC's symbolic objects.  It holds a pointer to
 *  the other object in order to do garbage collection by the method of
 *  reference counting.  I.e., it is a smart pointer.  Also, the constructor
 *  ex::ex(const basic & other) calls the methods that do automatic
 *  evaluation.  E.g., x-x turns automatically into 0. */
class ex {
	friend class archive_node;
	friend inline bool are_ex_trivially_equal(const ex &, const ex &);
	template<class T> friend inline const T &ex_to(const ex &);
	template<class T> friend inline bool is_a(const ex &);
	template<class T> friend inline bool is_exactly_a(const ex &);
	
	friend class print_order;
	friend class print_order_mul;
	friend class print_order_pair;
	// default constructor, copy constructor and assignment operator
public:
	ex() throw();

	// other constructors
public:
	ex(const basic & other);
	ex(int i);
	ex(unsigned int i);
	ex(long i);
	ex(double const d);
	ex(PyObject* o);

	/** Construct ex from string and a list of symbols. The input grammar is
	 *  similar to the GiNaC output format. All symbols and indices to be used
	 *  in the expression must be specified in a lst in the second argument.
	 *  Undefined symbols and other parser errors will throw an exception. */
	ex(const std::string &s, const ex &l);
	
public:
	// non-virtual functions in this class
public:
	/** Efficiently swap the contents of two expressions. */
	void swap(ex & other) throw()
	{
		GINAC_ASSERT(bp->flags & status_flags::dynallocated);
		GINAC_ASSERT(other.bp->flags & status_flags::dynallocated);
		bp.swap(other.bp);
	}

	// iterators
	const_iterator begin() const throw();
	const_iterator end() const throw();
	const_preorder_iterator preorder_begin() const;
	const_preorder_iterator preorder_end() const throw();
	const_postorder_iterator postorder_begin() const;
	const_postorder_iterator postorder_end() const throw();

	// evaluation
	ex eval(int level = 0) const { return bp->eval(level); }
	ex evalf(int level = 0, PyObject* parent=nullptr) const 
	{ return bp->evalf(level, parent); }

	// printing
	void print(const print_context & c, unsigned level = 0) const;
	void dbgprint() const;
	void dbgprinttree() const;

	// info
	bool info(unsigned inf) const { return bp->info(inf); }

	// operand access
	size_t nops() const { return bp->nops(); }
	size_t nsymbols() const;
        bool get_first_symbol(ex &x) const;
        symbolset symbols() const;
        symbolset free_symbols() const;
	const ex op(size_t i) const { return bp->op(i); }
	ex sorted_op(size_t i) const;
	ex operator[](const ex & index) const { return (*bp)[index]; }
	ex operator[](size_t i) const { return (*bp)[i]; }
	ex & let_op(size_t i);
	ex & operator[](const ex & index);
	ex & operator[](size_t i);
	ex lhs() const;
	ex rhs() const;

	// function for complex expressions
	ex conjugate() const { return bp->conjugate(); }
	ex real_part() const { return bp->real_part(); }
	ex imag_part() const { return bp->imag_part(); }

	// pattern matching
	bool has(const ex & pattern, unsigned options = 0) const { return bp->has(pattern, options); }
	bool find(const ex & pattern, lst & found) const;
	bool match(const ex & pattern) const;
	bool match(const ex & pattern, lst & repl_lst) const { return bp->match(pattern, repl_lst); }

	// substitutions
	ex subs(const exmap & m, unsigned options = 0) const
                { return bp->subs(m, options); }
	ex subs(const lst & ls, const lst & lr, unsigned options = 0) const;
	ex subs(const ex & e, unsigned options = 0) const;

	// function mapping
	ex map(map_function & f) const { return bp->map(f); }
	ex map(ex (*f)(const ex & e)) const;

	// visitors and tree traversal
	void accept(visitor & v) const { bp->accept(v); }
	void traverse_preorder(visitor & v) const;
	void traverse_postorder(visitor & v) const;
	void traverse(visitor & v) const { traverse_preorder(v); }

	// degree/coeff
	bool is_polynomial(const ex & vars) const;
	numeric degree(const ex & s) const;
	numeric ldegree(const ex & s) const;
	ex coeff(const ex & s, const ex & n) const { return bp->coeff(s, n); }
	ex lcoeff(const ex & s) const;
	ex tcoeff(const ex & s) const;
        void coefficients(const ex & s, expairvec & vec) const;

	// expand/collect
	ex expand(unsigned options=0) const;
	ex collect(const ex & s, bool distributed = false) const { return bp->collect(s, distributed); }

	// differentiation and series expansion
	ex diff(const symbol & s, unsigned nth = 1) const;
	ex series(const ex & r, int order, unsigned options = 0) const;
        void useries(flint_series_t& fp, int order) const { return bp->useries(fp, order); }

	// rational functions
	ex normal(int level = 0, bool noexpand_combined=false,
                        bool noexpand_numer=true) const;
	ex to_rational(exmap & repl) const;
	ex to_rational(lst & repl_lst) const;
	ex to_polynomial(exmap & repl) const;
	ex to_polynomial(lst & repl_lst) const;
#ifdef PYNAC_HAVE_LIBGIAC
        const giac::polynome to_polynome(ex_int_map& map, exvector& revmap) const;
#endif
        const CanonicalForm to_canonical(ex_int_map& map,
                        power_ocvector_map& pomap, exvector& revmap) const;
        void collect_powers(power_ocvector_map& pomap) const;
	ex numer() const;
	ex denom() const;
	ex numer_denom() const;
        ex combine_fractions(bool deep=true) const;

	// polynomial algorithms
	ex unit(const ex &x) const;
	ex content(const ex &x) const;
	numeric integer_content() const;
	ex primpart(const ex &x) const;
	ex primpart(const ex &x, const ex &cont) const;
	void unitcontprim(const ex &x, ex &u, ex &c, ex &p) const;
	ex smod(const numeric &xi) const { return bp->smod(xi); }
	numeric max_coefficient() const;
        bool is_linear(const symbol& x, ex& a, ex& b) const;
        bool is_quadratic(const symbol& x, ex& a, ex& b, ex& c) const;

	// domains
	void set_domain(unsigned d);

	// comparison
	int compare(const ex & other) const;
	bool is_equal(const ex & other) const;
	bool is_zero() const;
        bool is_integer_one() const;
        bool is_integer_pmone() const;
	
	// symmetry
	ex symmetrize() const;
	ex symmetrize(const lst & l) const;
	ex antisymmetrize() const;
	ex antisymmetrize(const lst & l) const;
	ex symmetrize_cyclic() const;
	ex symmetrize_cyclic(const lst & l) const;

	// noncommutativity
	unsigned return_type() const { return bp->return_type(); }
	tinfo_t return_type_tinfo() const { return bp->return_type_tinfo(); }

	long gethash() const { return bp->gethash(); }

private:
	static ptr<basic> construct_from_basic(const basic & other);
	static basic & construct_from_int(int i);
	static basic & construct_from_pyobject(PyObject* o);
	static basic & construct_from_uint(unsigned int i);
	static basic & construct_from_long(long i);
	static basic & construct_from_double(double d);
	static ptr<basic> construct_from_string_and_lst(const std::string &s, const ex &l);
	void makewriteable();
	void share(const ex & other) const;
        static ex deep_combine_fractions(ex e);
        struct combine_map_function : public map_function {
                ex operator()(const ex & e) override { return deep_combine_fractions(e); }
        };


// member variables

private:
	mutable ptr<basic> bp;  ///< pointer to basic object managed by this
};


// performance-critical inlined method implementations

// This needs to be a basic* because we don't know that numeric is derived
// from basic and we need a basic& for the ex default constructor
extern const basic *_num0_bp;

inline
ex::ex() throw() : bp(*const_cast<basic *>(_num0_bp))
{
	GINAC_ASSERT(bp->flags & status_flags::dynallocated);
}

inline
ex::ex(const basic & other) : bp(construct_from_basic(other))
{
	GINAC_ASSERT(bp->flags & status_flags::dynallocated);
}

inline
ex::ex(int i) : bp(construct_from_int(i))
{
	GINAC_ASSERT(bp->flags & status_flags::dynallocated);
}

inline
ex::ex(PyObject* o) : bp(construct_from_pyobject(o))
{
	GINAC_ASSERT(bp->flags & status_flags::dynallocated);
}

inline
ex::ex(unsigned int i) : bp(construct_from_uint(i))
{
	GINAC_ASSERT(bp->flags & status_flags::dynallocated);
}

inline
ex::ex(long i) : bp(construct_from_long(i))
{
	GINAC_ASSERT(bp->flags & status_flags::dynallocated);
}

inline
ex::ex(double const d) : bp(construct_from_double(d))
{
	GINAC_ASSERT(bp->flags & status_flags::dynallocated);
}

inline
ex::ex(const std::string &s, const ex &l) : bp(construct_from_string_and_lst(s, l))
{
	GINAC_ASSERT(bp->flags & status_flags::dynallocated);
}

// Iterators

class const_iterator : public std::iterator<std::random_access_iterator_tag, ex, ptrdiff_t, const ex *, const ex &> {
	friend class ex;
	friend class const_preorder_iterator;
	friend class const_postorder_iterator;

public:
	const_iterator() throw() {}

private:
	const_iterator(ex e_, size_t i_) throw() : e(std::move(e_)), i(i_) {}

public:
	// This should return an ex&, but that would be a reference to a
	// temporary value
	ex operator*() const
	{
		return e.op(i);
	}

	// This should return an ex*, but that would be a pointer to a
	// temporary value
	std::unique_ptr<ex> operator->() const
	{
		return std::unique_ptr<ex>(new ex(operator*()));
	}

	ex operator[](difference_type n) const
	{
		return e.op(i + n);
	}

	const_iterator &operator++() throw()
	{
		++i;
		return *this;
	}

	const_iterator operator++(int) throw()
	{
		const_iterator tmp = *this;
		++i;
		return tmp;
	}

	const_iterator &operator+=(difference_type n) throw()
	{
		i += n;
		return *this;
	}

	const_iterator operator+(difference_type n) const throw()
	{
		return const_iterator(e, i + n);
	}

	inline friend const_iterator operator+(difference_type n, const const_iterator &it) throw()
	{
		return const_iterator(it.e, it.i + n);
	}

	const_iterator &operator--() throw()
	{
		--i;
		return *this;
	}

	const_iterator operator--(int) throw()
	{
		const_iterator tmp = *this;
		--i;
		return tmp;
	}

	const_iterator &operator-=(difference_type n) throw()
	{
		i -= n;
		return *this;
	}

	const_iterator operator-(difference_type n) const throw()
	{
		return const_iterator(e, i - n);
	}

	inline friend difference_type operator-(const const_iterator &lhs, const const_iterator &rhs) throw()
	{
		return lhs.i - rhs.i;
	}

	bool operator==(const const_iterator &other) const throw()
	{
		return are_ex_trivially_equal(e, other.e) && i == other.i;
	}

	bool operator!=(const const_iterator &other) const throw()
	{
		return !(*this == other);
	}

	bool operator<(const const_iterator &other) const throw()
	{
		return i < other.i;
	}

	bool operator>(const const_iterator &other) const throw()
	{
		return other < *this;
	}

	bool operator<=(const const_iterator &other) const throw()
	{
		return !(other < *this);
	}

	bool operator>=(const const_iterator &other) const throw()
	{
		return !(*this < other);
	}

protected:
	ex e; // this used to be a "const basic *", but in view of object fusion that wouldn't be safe
	size_t i;
};

namespace internal {

struct _iter_rep {
	_iter_rep(ex e_, size_t i_, size_t i_end_) : e(std::move(e_)), i(i_), i_end(i_end_) {}

	bool operator==(const _iter_rep &other) const throw()
	{
		return are_ex_trivially_equal(e, other.e) && i == other.i;
	}

	bool operator!=(const _iter_rep &other) const throw()
	{
		return !(*this == other);
	}

	ex e;
	size_t i;
	size_t i_end;
};

} // namespace internal

class const_preorder_iterator : public std::iterator<std::forward_iterator_tag, ex, ptrdiff_t, const ex *, const ex &> {
public:
	const_preorder_iterator() throw() {}

	const_preorder_iterator(const ex &e, size_t n)
	{
		s.push(internal::_iter_rep(e, 0, n));
	}

public:
	reference operator*() const
	{
		return s.top().e;
	}

	pointer operator->() const
	{
		return &(s.top().e);
	}

	const_preorder_iterator &operator++()
	{
		increment();
		return *this;
	}

	const_preorder_iterator operator++(int)
	{
		const_preorder_iterator tmp = *this;
		increment();
		return tmp;
	}

	bool operator==(const const_preorder_iterator &other) const throw()
	{
		return s == other.s;
	}

	bool operator!=(const const_preorder_iterator &other) const throw()
	{
		return !(*this == other);
	}

private:
	std::stack<internal::_iter_rep, std::vector<internal::_iter_rep> > s;

	void increment()
	{
		while (!s.empty() && s.top().i == s.top().i_end) {
			s.pop();
			if (s.empty())
				return;
			++s.top().i;
		}

		internal::_iter_rep & current = s.top();

		if (current.i != current.i_end) {
			const ex & child = current.e.op(current.i);
			s.push(internal::_iter_rep(child, 0, child.nops()));
		}
	}
};

class const_postorder_iterator : public std::iterator<std::forward_iterator_tag, ex, ptrdiff_t, const ex *, const ex &> {
public:
	const_postorder_iterator() throw() {}

	const_postorder_iterator(const ex &e, size_t n)
	{
		s.push(internal::_iter_rep(e, 0, n));
		descend();
	}

public:
	reference operator*() const
	{
		return s.top().e;
	}

	pointer operator->() const
	{
		return &(s.top().e);
	}

	const_postorder_iterator &operator++()
	{
		increment();
		return *this;
	}

	const_postorder_iterator operator++(int)
	{
		const_postorder_iterator tmp = *this;
		increment();
		return tmp;
	}

	bool operator==(const const_postorder_iterator &other) const throw()
	{
		return s == other.s;
	}

	bool operator!=(const const_postorder_iterator &other) const throw()
	{
		return !(*this == other);
	}

private:
	std::stack<internal::_iter_rep, std::vector<internal::_iter_rep> > s;

	void descend()
	{
		while (s.top().i != s.top().i_end) {
			internal::_iter_rep & current = s.top();
			const ex & child = current.e.op(current.i);
			s.push(internal::_iter_rep(child, 0, child.nops()));
		}
	}

	void increment()
	{
		if (s.top().i == s.top().i_end)
			s.pop();
		if (!s.empty()) {
			++s.top().i;
			descend();
		}
	}
};

inline const_iterator ex::begin() const throw()
{
	return const_iterator(*this, 0);
}

inline const_iterator ex::end() const throw()
{
	return const_iterator(*this, nops());
}

inline const_preorder_iterator ex::preorder_begin() const
{
	return const_preorder_iterator(*this, nops());
}

inline const_preorder_iterator ex::preorder_end() const throw()
{
	return const_preorder_iterator();
}

inline const_postorder_iterator ex::postorder_begin() const
{
	return const_postorder_iterator(*this, nops());
}

inline const_postorder_iterator ex::postorder_end() const throw()
{
	return const_postorder_iterator();
}

/** Compare two objects of class quickly without doing a deep tree traversal.
 *  @return "true" if they are equal
 *          "false" if equality cannot be established quickly (e1 and e2 may
 *          still be equal, in this case. */
inline bool are_ex_trivially_equal(const ex &e1, const ex &e2)
{
	return e1.bp == e2.bp;
}


// Make it possible to print exvectors and exmaps
std::ostream & operator<<(std::ostream & os, const exvector & e);
std::ostream & operator<<(std::ostream & os, const exset & e);
std::ostream & operator<<(std::ostream & os, const exmap & e);

/* Function objects for STL sort() etc. */
struct ex_is_less : public std::binary_function<ex, ex, bool> {
	bool operator() (const ex &lh, const ex &rh) const { return lh.compare(rh) < 0; }
};

struct ex_is_equal : public std::binary_function<ex, ex, bool> {
	bool operator() (const ex &lh, const ex &rh) const { return lh.is_equal(rh); }
};

struct op0_is_equal : public std::binary_function<ex, ex, bool> {
	bool operator() (const ex &lh, const ex &rh) const { return lh.op(0).is_equal(rh.op(0)); }
};

struct ex_swap : public std::binary_function<ex, ex, void> {
	void operator() (ex &lh, ex &rh) const { lh.swap(rh); }
};

/* Convert function pointer to function object suitable for map(). */
class pointer_to_map_function : public map_function {
protected:
	ex (*ptr)(const ex &);
public:
	explicit pointer_to_map_function(ex x(const ex &)) : ptr(x) {}
	ex operator()(const ex & e) override { return ptr(e); }
};

template<class T1>
class pointer_to_map_function_1arg : public map_function {
protected:
	ex (*ptr)(const ex &, T1);
	T1 arg1;
public:
	explicit pointer_to_map_function_1arg(ex x(const ex &, T1), T1 a1) : ptr(x), arg1(a1) {}
	ex operator()(const ex & e) override { return ptr(e, arg1); }
};

template<class T1, class T2>
class pointer_to_map_function_2args : public map_function {
protected:
	ex (*ptr)(const ex &, T1, T2);
	T1 arg1;
	T2 arg2;
public:
	explicit pointer_to_map_function_2args(ex x(const ex &, T1, T2), T1 a1, T2 a2) : ptr(x), arg1(a1), arg2(a2) {}
	ex operator()(const ex & e) override { return ptr(e, arg1, arg2); }
};

template<class T1, class T2, class T3>
class pointer_to_map_function_3args : public map_function {
protected:
	ex (*ptr)(const ex &, T1, T2, T3);
	T1 arg1;
	T2 arg2;
	T3 arg3;
public:
	explicit pointer_to_map_function_3args(ex x(const ex &, T1, T2, T3), T1 a1, T2 a2, T3 a3) : ptr(x), arg1(a1), arg2(a2), arg3(a3) {}
	ex operator()(const ex & e) override { return ptr(e, arg1, arg2, arg3); }
};

template<class C>
class pointer_to_member_to_map_function : public map_function {
protected:
	ex (C::*ptr)(const ex &);
	C &c;
public:
	explicit pointer_to_member_to_map_function(ex (C::*member)(const ex &), C &obj) : ptr(member), c(obj) {}
	ex operator()(const ex & e) override { return (c.*ptr)(e); }
};

template<class C, class T1>
class pointer_to_member_to_map_function_1arg : public map_function {
protected:
	ex (C::*ptr)(const ex &, T1);
	C &c;
	T1 arg1;
public:
	explicit pointer_to_member_to_map_function_1arg(ex (C::*member)(const ex &, T1), C &obj, T1 a1) : ptr(member), c(obj), arg1(a1) {}
	ex operator()(const ex & e) override { return (c.*ptr)(e, arg1); }
};

template<class C, class T1, class T2>
class pointer_to_member_to_map_function_2args : public map_function {
protected:
	ex (C::*ptr)(const ex &, T1, T2);
	C &c;
	T1 arg1;
	T2 arg2;
public:
	explicit pointer_to_member_to_map_function_2args(ex (C::*member)(const ex&, T1, T2), C &obj, T1 a1, T2 a2) : ptr(member), c(obj), arg1(a1), arg2(a2) {}
	ex operator()(const ex & e) override { return (c.*ptr)(e, arg1, arg2); }
};

template<class C, class T1, class T2, class T3>
class pointer_to_member_to_map_function_3args : public map_function {
protected:
	ex (C::*ptr)(const ex &, T1, T2, T3);
	C &c;
	T1 arg1;
	T2 arg2;
	T3 arg3;
public:
	explicit pointer_to_member_to_map_function_3args(ex (C::*member)(const ex &, T1, T2, T3), C &obj, T1 a1, T2 a2, T3 a3) : ptr(member), c(obj), arg1(a1), arg2(a2), arg3(a3) {}
	ex operator()(const ex & e) override { return (c.*ptr)(e, arg1, arg2, arg3); }
};

inline ex ex::map(ex f(const ex &)) const
{
	pointer_to_map_function fcn(f);
	return bp->map(fcn);
}

// convenience type checker template functions

/** Check if ex is a handle to a T, including base classes. */
template <class T>
inline bool is_a(const ex &obj)
{
	return is_a<T>(*obj.bp);
}

/** Check if ex is a handle to a T, not including base classes. */
template <class T>
inline bool is_exactly_a(const ex &obj)
{
	return is_exactly_a<T>(*obj.bp);
}

/** Return a reference to the basic-derived class T object embedded in an
 *  expression.  This is fast but unsafe: the result is undefined if the
 *  expression does not contain a T object at its top level.  Hence, you
 *  should generally check the type of e first.  Also, you shouldn't cache
 *  the returned reference because GiNaC's garbage collector may destroy
 *  the referenced object any time it's used in another expression.
 *
 *  @param e expression
 *  @return reference to object of class T
 *  @see is_exactly_a<class T>() */
template <class T>
inline const T &ex_to(const ex &e)
{
	GINAC_ASSERT(is_a<T>(e));
	return static_cast<const T &>(*e.bp);
}


} // namespace GiNaC

#endif // ndef __GINAC_EX_H__