This file is indexed.

/usr/include/psurface/MultiDimOctree.h is in libpsurface-dev 2.0.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
/**
 * @file
 * @brief dimension independent octree functionality
 */
#ifndef MULTI_DIM_OCTREE_HH
#define MULTI_DIM_OCTREE_HH

#include <iostream>
#include <vector>
#include <deque>
#include <map>
#include "Box.h"

// can be defined if desired
#ifndef MEMINCREMENT
#define MEMINCREMENT 15
#endif

namespace psurface {

/** This class implements a dimension independent structure suitable for point
 *  location. It works like a quadtree or an octree, hence the name.
 *  Items of type T can be inserted. The octree provides a
 *  method @c lookup which returns a list of candidate cells a given point or box
 *  might be contained in.
 *  In order for items to not have to be of a particular type or to implement a
 *  particular interface the needed geometric information is provided by an
 *  associated functor object. The functor class F has to provide the operator
 *
 *  @code
 *  bool operator()(const CoordType& lower, const CoordType& upper, const T& item);
 *  @endcode
 *
 *  This method should return TRUE if the item intersects the box, FALSE otherwise.
 *
 *  Elements to be inserted into the octree are not copied. Instead, a
 *  pointer to the original element is stored. Consequently, elements must
 *  not be moved or deleted after they have been inserted into the tree.
 *
 *  While removal of items is perfectly supported, exhaustive use of this feature is
 *  not recommended. This is due to the tree refining on insert but not coarsening on
 *  removal. If many items are removed from the leaf cells branches are not collapsed
 *  even though maybe being sufficiently sparse.
 *
 *  \tparam T the data type of the stored data
 *  \tparam F the data type of the above mentioned functor; this class has to support operator() (see class description)
 *  \tparam C the type of the coordinates used; (const) access via operator[] is required
 *  \tparam dim the dimension of the tree (has to be the same as for the coordinates)
 */
template <class T, typename F, typename C, int dim>
class MultiDimOctree
{
public:

    /// @brief the type of the stored data
    typedef T                 DataType;

    /// @brief the type of the functor that tells about the items' geometry
    typedef F                 CoordFunctor;

    /// @brief a type describing a box in dim dimensions
    typedef Box<C, dim>       BoxType;

    /// @brief the type of the coordinates used
    typedef C                 CoordType;

    /// @brief the type of the container that stores the
    /// results of lookup operations
    typedef std::vector<T*>   ResultContainer;

    /// @brief a constant depicting the # of subcells
    /// a cell is devided into
    static const int SUBCELLS = 1 << dim;

    /** Constructor. The argument @c bbox specifies the spatial region
     * covered by the octree. During insertion of elements this region
     * is successively subdivided into smaller subregions. Elements which
     * do not intersect the original domain specified by @c bbox will not
     * be inserted into any leaf of the octree.
   *
     * The optional argument @c maxDepth denotes the maximum depth of
     * the octree, while @c maxElemPerLeaf denotes the maximum number of
     * elements stored in a leaf node. If this number is exceeded after
     * a new element has been inserted and if the maximum depth of the
     * octree has not yet been reached, 2^dim new leafs are created and the
     * elements are distributed among the new leafs. A single element
     * might be inserted into multiple leafs if the intersection test
     * passes multiple times.
     * @param bbox the domain of the octree
     * @param maxDepth the maximum # of refined levels
     * @param maxElemPerLeaf if reached in a cell the cell will be subdivided
   */
    MultiDimOctree(const BoxType &bbox, const F* f_, int maxDepth=6, int maxElemPerLeaf=10);

    /// @brief Default constructor.
    MultiDimOctree();

    /// @brief Destructor (frees all memory).
    virtual ~MultiDimOctree();

    /** Inserts a single element into the octree. Elements are not
   *  copied, but are referenced via a pointer. Therefore, elements must
   *  not be moved or deleted after insertion.
   *  @param element the to-insert element
   */
    bool insert(T* element);

    /**
     * @brief removes an element from the octree
     * @param element the element to remove
     */
    bool remove(T* element)
    {
            return remove(0, box, element);
        }

    /**@name lookup methods */
    //@{
    /** This method appends all elements which potentially may contain
        point @c pos to the dynamic array @c result. The array is not cleared
        in advance allowing you to collect results for multiple points. */
    int lookup(const std::tr1::array<C,dim>& pos, ResultContainer& result);

    /** Same as lookup except that indices instead of pointers are
        returned. Requires prior call to enableUniqueLookup. */
    int lookupIndex(const std::tr1::array<C,dim>& pos, std::vector<int>& result);

    /** This methods appends all elements that intersect a given box. */
    int lookup(const BoxType &queryBox, ResultContainer& result);

    /** Same as lookup except that indices instead of pointers are
        returned. Requires prior call to enableUniqueLookup. */
    int lookupIndex(const BoxType& queryBox, std::vector<int>& result);
    //@}

    /// Removes all elements and deletes all leafs of the octree.
    void clear();

    /// Calls @c clear and initializes octree from scratch.
    void init(const BoxType &bbox, const F* f_, int maxDepth=6, int maxElemPerLeaf=10);

    /// Print some statistics to stdout.
    void info();

    /// Returns size of complete octree in bytes.
    int memSize();

    /// Returns true if octree contains no elements.
    int isEmpty() const { return (allElements.front().n==0); }

    /// Returns maximum depth of octree.
    int getMaxDepth() const { return maxDepth; }

    /** Sets maximum depth of octree. The tree is not restructured
        in this call, so call this method before inserting elements. */
    void setMaxDepth(int val)   { maxDepth = val; }

    /// Returns maximum number of elements per leaf.
    int getMaxElemPerLeaf() const { return maxElemPerLeaf; }

    /** Sets maximum number of elements per leaf. The tree is not restructured
        in this call, so call this method before inserting elements. */
    void setMaxElemPerLeaf(int val) { maxElemPerLeaf = val; }

    /** Since elements may be inserted into multiple leafs, it is possible
        that a single element is reported multiple times by lookup.
        This behavior can be suppressed if all elements inserted into
        the octree are arranged subsequently in a single array. In this
        case a bitfield of the size of the array is allocated. The bitfield
        is used to mark an element the first time it is found.

        The details: @c baseAddress denotes the address of the first element
        of the array, while @c nElements denotes the total size of the
        array. The array index of some element @c elem is computed using
        pointer arithmetic via <tt>&elem - baseAddress</tt>. */
    void enableUniqueLookup(int nElements, const T* baseAddress);

    /// This methods disables unique lookup of octree elements.
    void disableUniqueLookup();

    /// Returns current base address.
    const T* getBaseAddress() const { return baseAddress; }

    /// Returns global bounding box as defined in constructor or @c init.
    void getBoundingBox(BoxType &bb) const { bb = box; }

    /** for each cell call the virtual function workProc,
        which may be overloaded by derived classes. Returns 1 if operation was interrupted.*/
    int iterateCells(int leafsOnly=1);

    /// Called for each (leaf) cell (elem) from iterateCells. The depth
    /// and box as well as a (virtual) 3D cell index on this depth is
    /// provided. returns 1 to break iteration
    virtual int workProc(int elem, int depth, const BoxType &elemBox, int indices[dim]) { return 0; }

protected:

    int iterateCells(int elem, int depth, const BoxType &elemBox,
            int leafsOnly, int indices[dim]);

    /*
     * No description necessary since protected anyway.
     * Short: Type of a cell that - if a leaf - stores an
     * array of inserted items und - if not a leaf - only
     * stores an index that helps identifying the subcells
     * in the global array of all cells.
     */
    struct Element
    {
        unsigned int isLeaf:1;
        // for leaves: #data items in array "indices"
        // for branches: index of first subcell in global "allElement" array
        unsigned int n:31;
        T** indices;

        Element() : isLeaf(1), n(0), indices(NULL)
        {}

        ~Element()
        {
            if (indices)
                free(indices);
        }

        void remove(int remN, std::vector<bool> &remElems)
        {
            int oldN = n;
            n -= remN;
            if ((n % MEMINCREMENT) == 0)
            { // decrease size of memory
                T** oldIndices = indices;
                indices = (T**) malloc(n*sizeof(T*));
                for (int oldI=0, i=0; oldI<oldN; oldI++)
                {
                    if (!remElems[oldI])
                    {
                        indices[i] = oldIndices[oldI]; i++;
                    }
                }
                free(oldIndices);
            }
            else { // just move items (same size of memory)
                for (int oldI=0, i=0; oldI<oldN; oldI++)
                {
                    if (!remElems[oldI])
                    {
                        indices[i] = indices[oldI]; i++;
                    }
                }
            }
        }
    };

    /// @brief random access container storing all cells in the octree
    std::deque<Element> allElements;

    bool insert(int elem, int depth, const BoxType &elemBox, T* idx);

    bool remove(int elem, const BoxType &elemBox, const T* toBeDeleted);

    void lookup(int elem, BoxType &elemBox, const std::tr1::array<C,dim>& pos, ResultContainer& result);

    void lookup(int elem, const BoxType &elemBox, const BoxType& queryBox, ResultContainer& result);

    void subdivide(int elem, const BoxType &elemBox);

    BoxType                      box;
    int                          maxDepth;
    unsigned int                 maxElemPerLeaf;
    const T*                     baseAddress;
    std::vector<bool>            lookupFlags;

        // The functor used to determine whether an element is contained in a given box
    const F*                     f;
};

/// @if EXCLUDETHIS

template <class T, typename F, typename C, int dim>
MultiDimOctree<T, F, C, dim>::MultiDimOctree(const BoxType &box, const F* f_, int maxDepth, int maxElemPerLeaf) : box(box)
{
    init(box, f_, maxDepth, maxElemPerLeaf);
}


template <class T, typename F, typename C, int dim>
MultiDimOctree<T, F, C, dim>::MultiDimOctree()
{
    baseAddress = 0;
    maxDepth = 0;
        f = NULL;
    maxElemPerLeaf = 0;
    allElements.clear();
    allElements.push_back(Element());
}


template <class T, typename F, typename C, int dim>
MultiDimOctree<T, F, C, dim>::~MultiDimOctree()
{
    // Empty, new std::vector frees all memory automatically
}


template <class T, typename F, typename C, int dim>
void MultiDimOctree<T, F, C, dim>::enableUniqueLookup(int n, const T* addr)
{
    baseAddress = addr;
    lookupFlags.resize(n);
    for (size_t i=0; i<lookupFlags.size(); i++)
        lookupFlags[i] = false;
}


template <class T, typename F, typename C, int dim>
void MultiDimOctree<T, F, C, dim>::disableUniqueLookup()
{
    baseAddress = 0;
    lookupFlags.resize(0);
}


template <class T, typename F, typename C, int dim>
void MultiDimOctree<T, F, C, dim>::clear()
{
    baseAddress = 0;
    lookupFlags.resize(0);

    // Just keep the root node. remax(1,1) is wrong since the root node
    // then would not be marked as a leaf.
    allElements.clear();
    allElements.push_back(Element());
}


template <class T, typename F, typename C, int dim>
void MultiDimOctree<T, F, C, dim>::init(const BoxType& b, const F* f_, int depth, int elemPerLeaf)
{
    box = b;
        f = f_;

    baseAddress = 0;
    lookupFlags.resize(0);
    maxDepth = depth;
    maxElemPerLeaf = elemPerLeaf;

    // Create root node.
    allElements.clear();
    allElements.push_back(Element());
}


template <class T, typename F, typename C, int dim>
bool MultiDimOctree<T, F, C, dim>::insert(T* element)
{
    if (this->f != NULL && (*this->f)(this->box.lower(), this->box.upper(), *element))
    {
        // return the success of the insert method
        return insert(0, 0 , box, element);
    }
    return false;
}





template <class T, typename F, typename C, int dim>
bool MultiDimOctree<T, F, C, dim>::insert(int elem, int depth, const BoxType &elemBox, T* idx)
{
    // if element is leaf -> simply insert and be done!
    Element& element = allElements[elem];
    if (element.isLeaf)
    {

        // but if element already contains max. number of items
        // subdivide and put items in subcells...
        // ...and then insert the new item (goto DESCEND)
        if (depth<maxDepth && element.n>=maxElemPerLeaf)
        {
            subdivide(elem, elemBox);
            goto DESCEND;
        }

        if (element.n % MEMINCREMENT == 0)
        {
            int newSize = element.n + MEMINCREMENT;
            if (element.indices)
            {
                element.indices =   (T**) realloc(element.indices, newSize*sizeof(T*));
            }
            else
            {
                element.indices = (T**) malloc(newSize*sizeof(T*));
            }
        }

        element.indices[element.n++] = idx;
        return true;
    }

    // this element is a parent, so go visit its children
    // and insert there
    DESCEND:

    int firstChild = element.n;

    depth++;

    // the return value
    bool inserted = false;

    // helpful points that describe box corners
        std::tr1::array<C,dim> upper, lower;
    // iterate over all subcells and check for intersections between
    // item and subcells
    for (int j = 0; j < SUBCELLS; ++j)
    {
        // compute the next child cell
        for(int i = 0; i < dim; ++i)
        {
            if (j & (1 << i))
            {
                lower[i] = elemBox.center()[i];
                upper[i] = elemBox.upper()[i];
            }
            else
            {
                lower[i] = elemBox.lower()[i];
                upper[i] = elemBox.center()[i];
            }
        }
        // if the item intersects the child element's box
        // insert it into this box
        BoxType childElemBox(lower, upper);
        if ((*f)(lower, upper, *idx))
            inserted = inserted || insert(firstChild+j, depth, childElemBox, idx);
    }
    return inserted;
}


template <class T, typename F, typename C, int dim>
int MultiDimOctree<T, F, C, dim>::iterateCells(int leafsOnly)
{
    int indices[dim];
    for (int i = 0; i < dim; ++i)
        indices[i] = 0;
    return iterateCells(0, 0, box, leafsOnly, indices);
}


template <class T, typename F, typename C, int dim>
int MultiDimOctree<T, F, C, dim>::iterateCells(int elem, int depth, const BoxType &elemBox,
        int leafsOnly, int indices[dim])
{
    Element& element = allElements[elem];
    if (element.isLeaf || !leafsOnly)
    {
        if (workProc(elem, depth, elemBox, indices))
            return 1;
    }
    if (element.isLeaf)
        return 0;

    int firstChild = element.n;

    std::tr1::array<C,dim> lower, upper, center = elemBox.center();

    // prepare all indices for the next stage
    depth++;
    int temp_indices[dim];
    for (int i = 0; i < dim; ++i)
        indices[i] *= 2;

    for (int j = 0; j < SUBCELLS; ++j)
    {
        // reset the temporary indices
        for (int i = 0; i < dim; ++i)
            temp_indices[i] = indices[i];

        // compute the next child cell
        for(int i = 0; i < dim; ++i)
        {
            if (j & (1 << i))
            {
                lower[i] = elemBox.center()[i];
                upper[i] = elemBox.upper()[i];
                temp_indices[i] += 1;
            }
            else
            {
                lower[i] = elemBox.lower()[i];
                upper[i] = elemBox.center()[i];
            }
        }

        BoxType childElemBox(lower, upper);
        if (iterateCells(firstChild+j, depth, childElemBox, leafsOnly, temp_indices))
            return 1;
    }
    return 0;
}


template <class T, typename F, typename C, int dim>
void MultiDimOctree<T, F, C, dim>::subdivide(int elem, const BoxType &elemBox)
{
    int childIndex = allElements.size();

    Element& element = allElements[elem];

    int nIndices = element.n;

    element.isLeaf = 0;
    element.n = childIndex;

    for (int i = 0; i < SUBCELLS; i++)
    {
        allElements.push_back(Element());
        // should not be necessary because these are default
        // vaules set by the constructor anyway
        //allElements.back().isLeaf = 1;
        //allElements.back().n = 0;
        //allElements.back().indices = 0;
    }

    // insert again into current element but since this is
    // not a leaf anymore the elements are put into the
    // newly created subcells properly
    for (int i = 0; i < nIndices; i++)
        insert(elem, 999, elemBox, element.indices[i]);

    // not a leaf anymore, so no items stored here either!
    if (element.indices)
    {
//      delete[] element.indices;
        free(element.indices);
        element.indices = 0;
    }
}


template <class T, typename F, typename C, int dim>
int MultiDimOctree<T, F, C, dim>::memSize()
{
    int bytes = allElements.size() * sizeof(Element);
    for (typename std::deque<Element>::reverse_iterator rit = allElements.rbegin(); rit != allElements.rend(); ++rit)
    {
        Element& element = *rit;
        if (element.isLeaf)
        {
            int n = element.n / MEMINCREMENT;
            bytes += (n+1)*MEMINCREMENT*sizeof(int);
        }
    }
    return bytes;
}


template <class T, typename F, typename C, int dim>
void MultiDimOctree<T, F, C, dim>::info()
{
    int nNodes = allElements.size();
    int nLeafs = 0;
    int nElements = 0;
    int minNumElements = 999999;
    int maxNumElements = 0;

    for (typename std::deque<Element>::iterator it = allElements.begin(); it != allElements.end(); ++it)
    {
        Element& node = *it;
        if (node.isLeaf)
        {
            nLeafs++;
            int n = node.n;
            if (n < minNumElements)
                minNumElements = n;
            if (n > maxNumElements)
                maxNumElements = n;
            nElements += n;
        }
    }

    std::cout << "MultiDimOctree: " << nNodes-nLeafs << " nodes,"
              << nLeafs << " leafs (" << (float) memSize()/(1024*1024) << " MB)" << std::endl;
    std::cout << "MultiDimOctree: " << nElements << " elements,"
              << " (" << (float)nElements/nLeafs << " per leaf, " << minNumElements << "..." << maxNumElements << ")" << std::endl;
}


template <class T, typename F, typename C, int dim>
int MultiDimOctree<T, F, C, dim>::lookup(const std::tr1::array<C,dim>& pos, ResultContainer& result)
{
    BoxType b(box);

    if (b.contains(pos))
        lookup(0, b, pos, result);

    // Ensure that lookupFlags is clean again...
    if (baseAddress)
    {
        for (int i=result.size()-1; i>=0; i--)
        {
            int n = result[i] - baseAddress;
            lookupFlags[n] = false;
        }
    }
    return result.size();
}


template <class T, typename F, typename C, int dim>
int MultiDimOctree<T, F, C, dim>::lookup(const BoxType& queryBox, ResultContainer& result)
{
    BoxType b(box);

    if (b.intersects(queryBox))
        lookup(0, b, queryBox, result);

    // Ensure that lookupFlags is clean again...
    if (baseAddress)
    {
        for (int i=result.size()-1; i>=0; i--)
        {
            int n = result[i] - baseAddress;
            lookupFlags[n] = false;
        }
    }
    return result.size();
}


template <class T, typename F, typename C, int dim>
int MultiDimOctree<T, F, C, dim>::lookupIndex(const BoxType& queryBox, std::vector<int>& result)
{
    ResultContainer tmpResult;
    lookup(queryBox, tmpResult);

    int n = tmpResult.size();
    for (int i=0; i<n; i++)
        result.push_back(tmpResult[i] - baseAddress);
    return result.size();
}


template <class T, typename F, typename C, int dim>
void MultiDimOctree<T, F, C, dim>::lookup(int elem, const BoxType &elemBox, const BoxType& queryBox, ResultContainer& result)
{
    Element& element = allElements[elem];

    if (element.isLeaf)
    {
        for (unsigned int i=0; i<element.n; i++)
        {
            T* t = element.indices[i];

            // get the functor of the element and check for intersection
            if ((*this->f)(queryBox.lower(), queryBox.upper(), *t))
            {
                if (baseAddress)
                { // this indicates unique lookup strategy
                    int k = t - baseAddress;
                    if (lookupFlags[k] == 0)
                    {
                        result.push_back(t);
                        lookupFlags[k] = true;
                    }
                } else
                    result.push_back(t); // t may be appended multiple times
            }
        }
    }
    else
    {
        int firstChild = element.n;

        // These intersection tests are faster than the generic BoxType member function,
        // since we do not have to check lower and upper coordinates of both boxes

        // the boundary of the next subcell is stored in here
                std::tr1::array<C,dim> lower, upper;
        for (int j = 0; j < SUBCELLS; ++j)
        {
            bool intersects_subcell = true;
            // compute the next child cell
            for(int i = 0; i < dim; ++i)
            {
                if (j & (1 << i))
                {
                    lower[i] = elemBox.center()[i];
                    upper[i] = elemBox.upper()[i];
                    intersects_subcell = intersects_subcell && (queryBox.upper()[i] >= lower[i]);
                }
                else
                {
                    lower[i] = elemBox.lower()[i];
                    upper[i] = elemBox.center()[i];
                    intersects_subcell = intersects_subcell && (queryBox.lower()[i] < upper[i]);
                }
            }
            // if intersecting then descend recursively to subcell
            if (intersects_subcell)
            {
                BoxType childElemBox(lower, upper);
                lookup(firstChild+j, childElemBox, queryBox, result);
            }
        }
    }
}


template <class T, typename F, typename C, int dim>
int MultiDimOctree<T, F, C, dim>::lookupIndex(const std::tr1::array<C,dim>& pos, std::vector<int>& result)
{
    ResultContainer tmpResult;
    lookup(pos, tmpResult);

    int n = tmpResult.size();
    for (int i=0; i<n; i++)
        result.push_back(tmpResult[i] - baseAddress);
    return result.size();
}


template <class T, typename F, typename C, int dim>
void MultiDimOctree<T, F, C, dim>::lookup(int elem, BoxType &elemBox, const std::tr1::array<C,dim>& pos, ResultContainer& result)
{
    Element& element = allElements[elem];

    if (element.isLeaf)
    {
        for (unsigned int i=0; i<element.n; i++)
        {
            T* t = element.indices[i];
            if (baseAddress)
            { // this indicates unique lookup strategy
                unsigned int k = t - baseAddress;
                if (lookupFlags[k] == 0)
                {
                    result.push_back(t);
                    lookupFlags[k] = true;
                }
            }
            else
                result.push_back(t); // t may be appended multiple times
        }
    }
    else
    {
        int firstChild = element.n;

        std::tr1::array<C,dim> lower, upper;

        int config = 0;
        // compute the subcell in which the point is located
        for (int i = 0; i < dim; ++i)
        {
            if (pos[i] >= elemBox.center()[i])
            {
                lower[i] = elemBox.center()[i];
                upper[i] = elemBox.upper()[i];
                config |= (1 << i);
            }
            else
            {
                lower[i] = elemBox.lower()[i];
                upper[i] = elemBox.center()[i];
            }
        }
        BoxType childElemBox(lower, upper);
        lookup(firstChild+config, childElemBox, pos, result);
    }
}


template <class T, typename F, typename C, int dim>
bool MultiDimOctree<T, F, C, dim>::remove(int elem, const BoxType &elemBox, const T* toBeDeleted)
{
    Element& element = allElements[elem];

    if (element.isLeaf)
    {
        std::vector<bool> remElems(element.n, false);
        const T* t;
        int remN = 0;
        // always remove all appearances of elemPtr
        for (unsigned int i=0; i<element.n; i++)
        {
            t = element.indices[i];
            if (t == toBeDeleted)
            {
                remElems[i] = true; remN++;
            }
        }
        if (remN)
        {
            element.remove(remN, remElems);
            return true;
        }
        return false;
    }
    else
    {
        int firstChild = element.n;

        // the result value
        bool removed = false;

        // helpful points that describe box corners
        std::tr1::array<C,dim> upper, lower;
        // iterate over all subcells and check for intersections between
        // item and subcells
        for (int j = 0; j < SUBCELLS; ++j)
        {
            // compute the next child cell
            for(int i = 0; i < dim; ++i)
            {
                if (j & (1 << i))
                {
                    lower[i] = elemBox.center()[i];
                    upper[i] = elemBox.upper()[i];
                }
                else
                {
                    lower[i] = elemBox.lower()[i];
                    upper[i] = elemBox.center()[i];
                }
            }
            // if the item intersects the child element's box
            // insert it into this box
            BoxType childElemBox(lower, upper);
            if ((*this->f)(lower, upper, *toBeDeleted))
                removed = removed || remove(firstChild+j, childElemBox, toBeDeleted);
        }

        return removed;
    }
}

/// @endif

} // namespace psurface

#endif // MULTI_DIM_OCTREE_HH

/// @}