This file is indexed.

/usr/include/palabos/particles/particleProcessingFunctional3D.h is in libplb-dev 1.5~r1+repack1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
/* This file is part of the Palabos library.
 *
 * Copyright (C) 2011-2015 FlowKit Sarl
 * Route d'Oron 2
 * 1010 Lausanne, Switzerland
 * E-mail contact: contact@flowkit.com
 *
 * The most recent release of Palabos can be downloaded at 
 * <http://www.palabos.org/>
 *
 * The library Palabos is free software: you can redistribute it and/or
 * modify it under the terms of the GNU Affero General Public License as
 * published by the Free Software Foundation, either version 3 of the
 * License, or (at your option) any later version.
 *
 * The library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Affero General Public License for more details.
 *
 * You should have received a copy of the GNU Affero General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
*/

#ifndef PARTICLE_PROCESSING_FUNCTIONAL_3D_H
#define PARTICLE_PROCESSING_FUNCTIONAL_3D_H

#include "core/globalDefs.h"
#include "atomicBlock/dataProcessingFunctional3D.h"
#include "atomicBlock/reductiveDataProcessingFunctional3D.h"
#include "atomicBlock/atomicContainerBlock3D.h"
#include "offLattice/triangleBoundary3D.h"
#include "algorithm/functions.h"
#include <map>

namespace plb {

/// Count the number of particles, no matter which kind, found inside the domain.
template<typename T, template<typename U> class Descriptor>
class CountParticlesFunctional3D : public PlainReductiveBoxProcessingFunctional3D
{
public:
    CountParticlesFunctional3D();
    /// Argument: Particle-field.
    virtual void processGenericBlocks(Box3D domain, std::vector<AtomicBlock3D*> fields);
    virtual CountParticlesFunctional3D<T,Descriptor>* clone() const;
    plint getNumParticles() const;
    virtual void getTypeOfModification(std::vector<modif::ModifT>& modified) const;
private:
    plint numParticlesId;
};

/// Count the number of particles, no matter which kind, found inside the domain.
template<typename T, template<typename U> class Descriptor>
class CountParticlesSelectiveFunctional3D : public PlainReductiveBoxProcessingFunctional3D
{
public:
    CountParticlesSelectiveFunctional3D(util::SelectInt* tags_);
    ~CountParticlesSelectiveFunctional3D();
    CountParticlesSelectiveFunctional3D(CountParticlesSelectiveFunctional3D<T,Descriptor> const& rhs);
    CountParticlesSelectiveFunctional3D<T,Descriptor>& operator=(CountParticlesSelectiveFunctional3D<T,Descriptor> const& rhs);
    void swap(CountParticlesSelectiveFunctional3D<T,Descriptor>& rhs);
    /// Argument: Particle-field.
    virtual void processGenericBlocks(Box3D domain, std::vector<AtomicBlock3D*> fields);
    virtual CountParticlesSelectiveFunctional3D<T,Descriptor>* clone() const;
    plint getNumParticles() const;
    virtual void getTypeOfModification(std::vector<modif::ModifT>& modified) const;
private:
    plint numParticlesId;
    util::SelectInt* tags;
};

/// Compute the average over all particle velocities.
template<typename T, template<typename U> class Descriptor>
class AverageParticleVelocityFunctional3D : public PlainReductiveBoxProcessingFunctional3D
{
public:
    AverageParticleVelocityFunctional3D();
    /// Argument: Particle-field.
    virtual void processGenericBlocks(Box3D domain, std::vector<AtomicBlock3D*> fields);
    virtual AverageParticleVelocityFunctional3D<T,Descriptor>* clone() const;
    Array<T,3> getAverageParticleVelocity() const;
    virtual void getTypeOfModification(std::vector<modif::ModifT>& modified) const;
private:
    Array<plint,3> averageVelocityId;
};

/// Copy particles of a certain tag from one field to another.
template<typename T, template<typename U> class Descriptor>
class CopySelectParticles3D : public BoxProcessingFunctional3D
{
public:
    CopySelectParticles3D(util::SelectInt* tags_);
    ~CopySelectParticles3D();
    CopySelectParticles3D(CopySelectParticles3D<T,Descriptor> const& rhs);
    CopySelectParticles3D<T,Descriptor>& operator=(CopySelectParticles3D<T,Descriptor> const& rhs);
    void swap(CopySelectParticles3D<T,Descriptor>& rhs);
    /// Arguments: [0] From Particle-field, [1] To Particle-field.
    virtual void processGenericBlocks(Box3D domain, std::vector<AtomicBlock3D*> fields);
    virtual CopySelectParticles3D<T,Descriptor>* clone() const;
    virtual void getTypeOfModification(std::vector<modif::ModifT>& modified) const;
private:
    util::SelectInt* tags;
};

/// Inject particles into the domain. The particles must be defined in a non-
///   parallel way, and duplicated over all processors.
template<typename T, template<typename U> class Descriptor>
class InjectParticlesFunctional3D : public BoxProcessingFunctional3D
{
public:
    /// The particles are not consumed in this class. A clone of the particles is
    ///   automatically made as they are added into the domain.
    InjectParticlesFunctional3D(std::vector<Particle3D<T,Descriptor>*>& particles_);
    /// Argument: Particle-field.
    virtual void processGenericBlocks(Box3D domain, std::vector<AtomicBlock3D*> fields);
    virtual InjectParticlesFunctional3D<T,Descriptor>* clone() const;
    virtual void getTypeOfModification(std::vector<modif::ModifT>& modified) const;
private:
    std::vector<Particle3D<T,Descriptor>*>& particles;
};

/// Generate a random number of particles inside the domain. Each cell generates
///   at most one particle, with a given probability and at a random position inside
///   the cell. All particles are identical clones (except for their position).
template<typename T, template<typename U> class Descriptor>
class InjectRandomParticlesFunctional3D : public BoxProcessingFunctional3D
{
public:
    InjectRandomParticlesFunctional3D(Particle3D<T,Descriptor>* particleTemplate_, T probabilityPerCell_);
    InjectRandomParticlesFunctional3D(InjectRandomParticlesFunctional3D<T,Descriptor> const& rhs);
    InjectRandomParticlesFunctional3D<T,Descriptor>&
        operator=(InjectRandomParticlesFunctional3D<T,Descriptor> const& rhs);
    void swap(InjectRandomParticlesFunctional3D<T,Descriptor>& rhs);
    ~InjectRandomParticlesFunctional3D();
    /// Argument: Particle-field.
    virtual void processGenericBlocks(Box3D domain, std::vector<AtomicBlock3D*> fields);
    virtual InjectRandomParticlesFunctional3D<T,Descriptor>* clone() const;
    virtual void getTypeOfModification(std::vector<modif::ModifT>& modified) const;
private:
    Particle3D<T,Descriptor>* particleTemplate;
    T probabilityPerCell;
};

/// Generate a random number of point-particles inside the domain. Each cell generates
///   at most one particle, with a given probability and at a random position inside
///   the cell.
template<typename T, template<typename U> class Descriptor, class DomainFunctional>
class AnalyticalInjectRandomParticlesFunctional3D : public BoxProcessingFunctional3D
{
public:
    AnalyticalInjectRandomParticlesFunctional3D(Particle3D<T,Descriptor>* particleTemplate_, T probabilityPerCell_, DomainFunctional functional_);
    AnalyticalInjectRandomParticlesFunctional3D(AnalyticalInjectRandomParticlesFunctional3D<T,Descriptor,DomainFunctional> const& rhs);
    AnalyticalInjectRandomParticlesFunctional3D<T,Descriptor,DomainFunctional>&
        operator=(AnalyticalInjectRandomParticlesFunctional3D<T,Descriptor,DomainFunctional> const& rhs);
    void swap(AnalyticalInjectRandomParticlesFunctional3D<T,Descriptor,DomainFunctional>& rhs);
    ~AnalyticalInjectRandomParticlesFunctional3D();
    /// Argument: Particle-field.
    virtual void processGenericBlocks(Box3D domain, std::vector<AtomicBlock3D*> fields);
    virtual AnalyticalInjectRandomParticlesFunctional3D<T,Descriptor,DomainFunctional>* clone() const;
    virtual void getTypeOfModification(std::vector<modif::ModifT>& modified) const;
private:
    Particle3D<T,Descriptor>* particleTemplate;
    T probabilityPerCell;
    DomainFunctional functional;
};

/// Generate a random number of point-particles inside the domain. Each cell generates
///   at most one particle, with a given probability and at a random position inside
///   the cell. Additionally to analytically-inject, this functional uses a bit-
///   mask to decide where to inject.
template<typename T, template<typename U> class Descriptor, class DomainFunctional>
class MaskedInjectRandomParticlesFunctional3D : public BoxProcessingFunctional3D
{
public:
    MaskedInjectRandomParticlesFunctional3D(Particle3D<T,Descriptor>* particleTemplate_, T probabilityPerCell_, DomainFunctional functional_, int flag_);
    MaskedInjectRandomParticlesFunctional3D(MaskedInjectRandomParticlesFunctional3D<T,Descriptor,DomainFunctional> const& rhs);
    MaskedInjectRandomParticlesFunctional3D<T,Descriptor,DomainFunctional>&
        operator=(MaskedInjectRandomParticlesFunctional3D<T,Descriptor,DomainFunctional> const& rhs);
    void swap(MaskedInjectRandomParticlesFunctional3D<T,Descriptor,DomainFunctional>& rhs);
    ~MaskedInjectRandomParticlesFunctional3D();
    /// Arguments: Particle-field, Mask.
    virtual void processGenericBlocks(Box3D domain, std::vector<AtomicBlock3D*> fields);
    virtual MaskedInjectRandomParticlesFunctional3D<T,Descriptor,DomainFunctional>* clone() const;
    virtual void getTypeOfModification(std::vector<modif::ModifT>& modified) const;
private:
    Particle3D<T,Descriptor>* particleTemplate;
    T probabilityPerCell;
    DomainFunctional functional;
    int flag;
};

/// Generate equally spaced particles inside each cell. Every cell generates
///   nx particles in its x-direction, ny in its y-direction and nz in its
///   z-direction (nx * ny * nz in total in each cell).
///   All particles are identical clones (except for their position).
template<typename T, template<typename U> class Descriptor>
class InjectEquallySpacedParticlesFunctional3D : public BoxProcessingFunctional3D
{
public:
    InjectEquallySpacedParticlesFunctional3D(Particle3D<T,Descriptor>* particleTemplate_, plint nx_, plint ny_, plint nz_);
    InjectEquallySpacedParticlesFunctional3D(InjectEquallySpacedParticlesFunctional3D<T,Descriptor> const& rhs);
    InjectEquallySpacedParticlesFunctional3D<T,Descriptor>&
        operator=(InjectEquallySpacedParticlesFunctional3D<T,Descriptor> const& rhs);
    void swap(InjectEquallySpacedParticlesFunctional3D<T,Descriptor>& rhs);
    ~InjectEquallySpacedParticlesFunctional3D();
    /// Argument: Particle-field.
    virtual void processGenericBlocks(Box3D domain, std::vector<AtomicBlock3D*> fields);
    virtual InjectEquallySpacedParticlesFunctional3D<T,Descriptor>* clone() const;
    virtual void getTypeOfModification(std::vector<modif::ModifT>& modified) const;
private:
    Particle3D<T,Descriptor>* particleTemplate;
    plint nx, ny, nz;
};

/// Generate equally spaced particles inside each cell. Every cell generates
///   nx particles in its x-direction, ny in its y-direction and nz in its
///   z-direction (nx * ny * nz in total in each cell). This functional uses
///   a bit-mask to decide where to inject. All particles are identical clones
///   (except for their position).
template<typename T, template<typename U> class Descriptor>
class MaskedInjectEquallySpacedParticlesFunctional3D : public BoxProcessingFunctional3D
{
public:
    MaskedInjectEquallySpacedParticlesFunctional3D(Particle3D<T,Descriptor>* particleTemplate_,
            plint nx_, plint ny_, plint nz_, int flag_);
    MaskedInjectEquallySpacedParticlesFunctional3D(
            MaskedInjectEquallySpacedParticlesFunctional3D<T,Descriptor> const& rhs);
    MaskedInjectEquallySpacedParticlesFunctional3D<T,Descriptor>&
        operator=(MaskedInjectEquallySpacedParticlesFunctional3D<T,Descriptor> const& rhs);
    void swap(MaskedInjectEquallySpacedParticlesFunctional3D<T,Descriptor>& rhs);
    ~MaskedInjectEquallySpacedParticlesFunctional3D();
    /// Arguments: Particle-field, Mask.
    virtual void processGenericBlocks(Box3D domain, std::vector<AtomicBlock3D*> fields);
    virtual MaskedInjectEquallySpacedParticlesFunctional3D<T,Descriptor>* clone() const;
    virtual void getTypeOfModification(std::vector<modif::ModifT>& modified) const;
private:
    Particle3D<T,Descriptor>* particleTemplate;
    plint nx, ny, nz;
    int flag;
};

/// Remove all particles from a given domain.
template<typename T, template<typename U> class Descriptor>
class AbsorbParticlesFunctional3D : public BoxProcessingFunctional3D
{
public:
    virtual void processGenericBlocks(Box3D domain, std::vector<AtomicBlock3D*> fields);
    /// Argument: Particle-field.
    virtual AbsorbParticlesFunctional3D<T,Descriptor>* clone() const;
    virtual void getTypeOfModification(std::vector<modif::ModifT>& modified) const;
};

/// Remove all particles from a given domain.
template<typename T, template<typename U> class Descriptor>
class AbsorbParticlesFunctionalSelective3D : public BoxProcessingFunctional3D
{
public:
    AbsorbParticlesFunctionalSelective3D(util::SelectInt* tags_);
    ~AbsorbParticlesFunctionalSelective3D();
    AbsorbParticlesFunctionalSelective3D(AbsorbParticlesFunctionalSelective3D<T,Descriptor> const& rhs);
    AbsorbParticlesFunctionalSelective3D<T,Descriptor>& operator=(AbsorbParticlesFunctionalSelective3D<T,Descriptor> const& rhs);
    void swap(AbsorbParticlesFunctionalSelective3D<T,Descriptor>& rhs);
    virtual void processGenericBlocks(Box3D domain, std::vector<AtomicBlock3D*> fields);
    /// Argument: Particle-field.
    virtual AbsorbParticlesFunctionalSelective3D<T,Descriptor>* clone() const;
    virtual void getTypeOfModification(std::vector<modif::ModifT>& modified) const;
private:
    util::SelectInt* tags;
};

/// Find particles injected inside wall nodes and remove them.
template<typename T, template<typename U> class Descriptor>
class RemoveParticlesFromWall3D : public BoxProcessingFunctional3D
{
public:
    RemoveParticlesFromWall3D(int wallFlag_);
    /// Arguments: [0] Particle-field [1] Flag-matrix
    virtual void processGenericBlocks(Box3D domain, std::vector<AtomicBlock3D*> fields);
    virtual RemoveParticlesFromWall3D<T,Descriptor>* clone() const;
    virtual void getTypeOfModification(std::vector<modif::ModifT>& modified) const;
private:
    int wallFlag; // Value that represents the wall in the flag matrix.
};

/// Find particles close to a wall and change their positions so they are pushed back to the flow field.
template<typename T, template<typename U> class Descriptor>
class PushParticlesAwayFromWall3D : public BoxProcessingFunctional3D
{
public:
    PushParticlesAwayFromWall3D(T cutOffValue_, T movingDistance_, int wallFlag_, int fluidFlag_);
    /// Arguments: [0] Particle-field [1] Flag-matrix
    virtual void processGenericBlocks(Box3D domain, std::vector<AtomicBlock3D*> fields);
    virtual PushParticlesAwayFromWall3D<T,Descriptor>* clone() const;
    virtual void getTypeOfModification(std::vector<modif::ModifT>& modified) const;
private:
    T cutOffValue; // When the speed of the particle drops below sqrt(cutOffValue), then this particle is a candidate for pushing.
    T movingDistance; // This is the distance the particles will be moved.
    int wallFlag; // Value that represents the wall nodes in the flag matrix.
    int fluidFlag; // Value that represents the fluid nodes in the flag matrix.
};

/// Execute the particle-fluid interaction step (during which the particles
///   don't move and the fluid doesn't change).
template<typename T, template<typename U> class Descriptor>
class FluidToParticleCoupling3D : public BoxProcessingFunctional3D
{
public:
    /// Particle speed = scaling*fluid speed.
    FluidToParticleCoupling3D(T scaling_);
    /// Arguments: [0] Particle-field; [1] Fluid.
    virtual void processGenericBlocks(Box3D domain, std::vector<AtomicBlock3D*> fields);
    virtual FluidToParticleCoupling3D<T,Descriptor>* clone() const;
    virtual void getTypeOfModification(std::vector<modif::ModifT>& modified) const;
private:
    T scaling;
};

template<typename T, template<typename U> class Descriptor>
class VelocityToParticleCoupling3D : public BoxProcessingFunctional3D
{
public:
    /// Particle speed = scaling*fluid speed.
    VelocityToParticleCoupling3D(T scaling_);
    /// Arguments: [0] Particle-field; [1] Velocity.
    virtual void processGenericBlocks(Box3D domain, std::vector<AtomicBlock3D*> fields);
    virtual VelocityToParticleCoupling3D<T,Descriptor>* clone() const;
    virtual void getTypeOfModification(std::vector<modif::ModifT>& modified) const;
private:
    T scaling;
};

template<typename T, template<typename U> class Descriptor>
class RhoBarJtoParticleCoupling3D : public BoxProcessingFunctional3D
{
public:
    /// Particle speed = scaling*fluid speed.
    RhoBarJtoParticleCoupling3D(bool velIsJ_, T scaling_);
    /// Arguments: [0] Particle-field; [1] rhoBarJ.
    virtual void processGenericBlocks(Box3D domain, std::vector<AtomicBlock3D*> fields);
    virtual RhoBarJtoParticleCoupling3D<T,Descriptor>* clone() const;
    virtual void getTypeOfModification(std::vector<modif::ModifT>& modified) const;
private:
    bool velIsJ;
    T scaling;
};

/// Execute the iteration step during which particles advance.
template<typename T, template<typename U> class Descriptor>
class AdvanceParticlesFunctional3D : public BoxProcessingFunctional3D
{
public:
    /// When the speed of a particle drops below sqrt(cutOffValue),
    ///   the particle is eliminated. Negative cutOffValue means no cutoff.
    AdvanceParticlesFunctional3D(T cutOffValue_ = -1.);
    /// Argument: Particle-field.
    virtual void processGenericBlocks(Box3D domain, std::vector<AtomicBlock3D*> fields);
    virtual AdvanceParticlesFunctional3D<T,Descriptor>* clone() const;
    virtual BlockDomain::DomainT appliesTo() const;
    virtual void getTypeOfModification(std::vector<modif::ModifT>& modified) const;
private:
    T cutOffValue;
};

/// Execute the iteration step during which particles advance, on the whole domain
/** The data processor's domain indication is being ignored. This works also with periodicity. **/
template<typename T, template<typename U> class Descriptor>
class AdvanceParticlesEveryWhereFunctional3D : public BoxProcessingFunctional3D
{
public:
    /// When the speed of a particle drops below sqrt(cutOffValue),
    ///   the particle is eliminated. Negative cutOffValue means no cutoff.
    AdvanceParticlesEveryWhereFunctional3D(T cutOffValue_ = -1.);
    /// Argument: Particle-field.
    virtual void processGenericBlocks(Box3D domain, std::vector<AtomicBlock3D*> fields);
    virtual AdvanceParticlesEveryWhereFunctional3D<T,Descriptor>* clone() const;
    virtual void getTypeOfModification(std::vector<modif::ModifT>& modified) const;
private:
    T cutOffValue;
};


/* ******** VerletUpdateVelocity3D *********************************** */

/// Update the velocity to complete an iteration of the Verlet algorithm. Works
/// with Verlet particles only.
template<typename T, template<typename U> class Descriptor>
class VerletUpdateVelocity3D : public BoxProcessingFunctional3D
{
public:
    /// Arguments: [0] Particle-field.
    virtual void processGenericBlocks(Box3D domain, std::vector<AtomicBlock3D*> fields);
    virtual VerletUpdateVelocity3D<T,Descriptor>* clone() const;
    virtual void getModificationPattern(std::vector<bool>& isWritten) const;
    virtual BlockDomain::DomainT appliesTo() const;
    virtual void getTypeOfModification(std::vector<modif::ModifT>& modified) const;
private:
    bool projectForce;
    Array<T,3> planeNormal;
};


/* ******** VerletUpdateVelocitySelective3D *********************************** */

/// Update the velocity to complete an iteration of the Verlet algorithm. Works
/// with Verlet particles only. Acts only on particles with the specified tag.
template<typename T, template<typename U> class Descriptor>
class VerletUpdateVelocitySelective3D : public BoxProcessingFunctional3D
{
public:
    VerletUpdateVelocitySelective3D(util::SelectInt* tags_);
    ~VerletUpdateVelocitySelective3D();
    VerletUpdateVelocitySelective3D(VerletUpdateVelocitySelective3D<T,Descriptor> const& rhs);
    VerletUpdateVelocitySelective3D<T,Descriptor>& operator=(VerletUpdateVelocitySelective3D<T,Descriptor> const& rhs);
    void swap(VerletUpdateVelocitySelective3D<T,Descriptor>& rhs);
    /// Arguments: [0] Particle-field.
    virtual void processGenericBlocks(Box3D domain, std::vector<AtomicBlock3D*> fields);
    virtual VerletUpdateVelocitySelective3D<T,Descriptor>* clone() const;
    virtual void getModificationPattern(std::vector<bool>& isWritten) const;
    virtual BlockDomain::DomainT appliesTo() const;
    virtual void getTypeOfModification(std::vector<modif::ModifT>& modified) const;
private:
    util::SelectInt* tags;
};

template< typename T,
          template<typename U> class Descriptor >
void addWallParticles (
    MultiParticleField3D<DenseParticleField3D<T,Descriptor> >& particles, TriangleBoundary3D<T>& boundary );

template< typename T,
          template<typename U> class Descriptor, class ParticleFieldT >
void addWallParticlesGeneric (
    MultiParticleField3D<ParticleFieldT>& particles, TriangleBoundary3D<T>& boundary );

/// Count the number of particles at each cell node and add the result to the scalar field.
template<typename T, template<typename U> class Descriptor>
class CountAndAccumulateParticles3D : public BoxProcessingFunctional3D
{
public:
    /// Arguments: [0] Particle-field; [1] Number of particles (plint scalar-field).
    virtual void processGenericBlocks(Box3D domain, std::vector<AtomicBlock3D*> fields);
    virtual CountAndAccumulateParticles3D<T,Descriptor>* clone() const;
    virtual void getTypeOfModification(std::vector<modif::ModifT>& modified) const;
};

/// Count the number of particles with a given tag at each cell node and add the result to the scalar field.
template<typename T, template<typename U> class Descriptor>
class CountAndAccumulateTaggedParticles3D : public BoxProcessingFunctional3D
{
public:
    CountAndAccumulateTaggedParticles3D(plint tag_);
    /// Arguments: [0] Particle-field; [1] Number of particles (plint scalar-field).
    virtual void processGenericBlocks(Box3D domain, std::vector<AtomicBlock3D*> fields);
    virtual CountAndAccumulateTaggedParticles3D<T,Descriptor>* clone() const;
    virtual void getTypeOfModification(std::vector<modif::ModifT>& modified) const;
private:
    plint tag;
};

/// Count the number of particles (with a given tag) at each refined cell node, and add the result
/// to the scalar field which is refined (defined on a refined grid with respect to the particle grid).
/// The particles which belong to each "sub-volume" of the refined scalar grid contained in the
/// "big volume" of the particle grid, must be identified, counted and accumulated.
template<typename T, template<typename U> class Descriptor>
class CountAndAccumulateTaggedParticlesRefined3D : public BoxProcessingFunctional3D
{
public:
    CountAndAccumulateTaggedParticlesRefined3D(plint tag_, plint dxScale_);
    /// Arguments: [0] Particle-field; [1] Number of particles (plint scalar-field).
    virtual void processGenericBlocks(Box3D coarseDomain, std::vector<AtomicBlock3D*> fields);
    virtual CountAndAccumulateTaggedParticlesRefined3D<T,Descriptor>* clone() const;
    virtual void getTypeOfModification(std::vector<modif::ModifT>& modified) const;
private:
    /// These helper functions are also implemented in the ParticleField3D class,
    /// but we need to re-implement them here, since we need them for the refined
    /// scalar field.
    static plint nearestCell(T pos);
    static void computeGridPosition(Array<T,3> const& position, Dot3D const& location,
            plint& iX, plint& iY, plint& iZ);
private:
    plint tag;
    plint dxScale;
};

/// Count the number of particles with given tags at each cell node and place the result to the scalar field.
template<typename T, template<typename U> class Descriptor>
class CountTaggedParticles3D : public BoxProcessingFunctional3D
{
public:
    CountTaggedParticles3D(util::SelectInt* tags_);
    ~CountTaggedParticles3D();
    CountTaggedParticles3D(CountTaggedParticles3D<T,Descriptor> const& rhs);
    CountTaggedParticles3D<T,Descriptor>& operator=(CountTaggedParticles3D<T,Descriptor> const& rhs);
    void swap(CountTaggedParticles3D<T,Descriptor>& rhs);
    /// Arguments: [0] Particle-field; [1] Number of particles (plint scalar-field).
    virtual void processGenericBlocks(Box3D domain, std::vector<AtomicBlock3D*> fields);
    virtual CountTaggedParticles3D<T,Descriptor>* clone() const;
    virtual void getTypeOfModification(std::vector<modif::ModifT>& modified) const;
private:
    util::SelectInt* tags;
};

template< typename T, template<typename U> class Descriptor,
          template<typename T_, template<typename U_> class Descriptor_> class ParticleFieldT >
plint countParticles (
                MultiParticleField3D<ParticleFieldT<T,Descriptor> >& particles, Box3D const& domain );

template< typename T, template<typename U> class Descriptor,
          template<typename T_, template<typename U_> class Descriptor_> class ParticleFieldT >
plint countParticles (
                MultiParticleField3D<ParticleFieldT<T,Descriptor> >& particles, Box3D const& domain, util::SelectInt* tags );

template<typename T, template<typename U> class Descriptor>
void injectParticles(std::vector<Particle3D<T,Descriptor>*>& injectedParticles,
                     MultiParticleField3D<DenseParticleField3D<T,Descriptor> >& particles, Box3D domain);

/* Iterations of a passive-scalar fluid-particle system:
 * =====================================================
 *
 * Note: The difficulty comes from the fact that particle-fields may have a larger
 *   envelope than the fluid. When advancing particles on bulk and envelope, the
 *   velocity data from the fluid is therefore not necessarily locally available.
 *   The velocity is therefore first stored in the particle (in the bulk), and then
 *   communicated to the envelopes.
 *
 * --- Particles are at time t, fluid is at time t, defined on bulk and envelope. ---
 *  1. Fluid collideAndStream().
 *  2. Particle advance (bulk+envelope). ==> Particles at time t on bulk (needs no communication).
 *  3. Fluid communication ==> Fluid at time t+1.
 *  4. Particle interact (bulk domain) with velocity at time t+1.
 *  5. Particle communication ==> Particle at time t+1.
 */

}  // namespace plb

#endif  // PARTICLE_PROCESSING_FUNCTIONAL_3D_H