This file is indexed.

/usr/include/palabos/parallelism/parallelDynamics.h is in libplb-dev 1.5~r1+repack1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
/* This file is part of the Palabos library.
 *
 * Copyright (C) 2011-2015 FlowKit Sarl
 * Route d'Oron 2
 * 1010 Lausanne, Switzerland
 * E-mail contact: contact@flowkit.com
 *
 * The most recent release of Palabos can be downloaded at 
 * <http://www.palabos.org/>
 *
 * The library Palabos is free software: you can redistribute it and/or
 * modify it under the terms of the GNU Affero General Public License as
 * published by the Free Software Foundation, either version 3 of the
 * License, or (at your option) any later version.
 *
 * The library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Affero General Public License for more details.
 *
 * You should have received a copy of the GNU Affero General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
*/

/** \file
 * Parallel dynamics object -- header file.
 */

#ifndef PARALLEL_DYNAMICS_H
#define PARALLEL_DYNAMICS_H

#include "core/globalDefs.h"
#include "core/dynamics.h"
#include "core/cell.h"


namespace plb {

#ifdef PLB_MPI_PARALLEL

template<typename T, template<typename U> class Descriptor>
class ParallelDynamics : public Dynamics<T,Descriptor> {
public:
    ParallelDynamics(std::vector<Cell<T,Descriptor>*>& baseCells_, bool hasBulkCell_);
    virtual Dynamics<T,Descriptor>* clone() const;
    virtual void collide(Cell<T,Descriptor>& cell,
                         BlockStatistics& statistics_);
    virtual T computeEquilibrium(plint iPop, T rhoBar, Array<T,Descriptor<T>::d> const& j,
                                 T jSqr, T thetaBar=T()) const;
    virtual void regularize(Cell<T,Descriptor>& cell, T rhoBar, Array<T,Descriptor<T>::d> const& j,
                            T jSqr, Array<T,SymmetricTensor<T,Descriptor>::n> const& PiNeq, T thetaBar=T() ) const;
    virtual T computeDensity(Cell<T,Descriptor> const& cell) const;
    virtual T computePressure(Cell<T,Descriptor> const& cell) const;
    virtual void computeVelocity( Cell<T,Descriptor> const& cell,
                                  Array<T,Descriptor<T>::d>& u ) const;
    virtual T computeTemperature(Cell<T,Descriptor> const& cell) const;
    virtual void computePiNeq (
        Cell<T,Descriptor> const& cell, Array<T,SymmetricTensor<T,Descriptor>::n>& PiNeq ) const;
    virtual void computeShearStress (
        Cell<T,Descriptor> const& cell, Array<T,SymmetricTensor<T,Descriptor>::n>& stress ) const;
    virtual void computeHeatFlux( Cell<T,Descriptor> const& cell,
                                  Array<T,Descriptor<T>::d>& q ) const;
    virtual void computeMoment( Cell<T,Descriptor> const& cell,
                                plint momentId, T* moment ) const;
    virtual T getOmega() const;
    virtual void setOmega(T omega_);
    virtual T getParameter(plint whichParameter) const;
    virtual void setParameter(plint whichParameter, T value);
    virtual plint numDecomposedVariables(plint order) const;
    virtual void decompose(Cell<T,Descriptor> const& cell, std::vector<T>& rawData, plint order) const;
    virtual void recompose(Cell<T,Descriptor>& cell, std::vector<T> const& rawData, plint order) const;
    virtual void rescale(std::vector<T>& rawData, T xDxInv, T xDt, plint order) const;
    virtual void rescale(int dxScale, int dtScale) {
        Dynamics<T,Descriptor>::rescale(dxScale, dtScale);
    }
    virtual void getPopulations(Cell<T,Descriptor> const& cell, Array<T,Descriptor<T>::q>& f) const;
    virtual void getExternalField (
            Cell<T,Descriptor> const& cell, plint pos, plint size, T* ext ) const;
    virtual void setPopulations(Cell<T,Descriptor>& cell, Array<T,Descriptor<T>::q> const& f);
    virtual void setExternalField (
            Cell<T,Descriptor>& cell, plint pos, plint size, const T* ext);
    virtual void defineDensity(Cell<T,Descriptor>& cell, T density);
    virtual void defineVelocity(Cell<T,Descriptor>& cell, Array<T,Descriptor<T>::d> const& u);
    virtual void defineTemperature(Cell<T,Descriptor>& cell, T temperature);
    virtual void defineHeatFlux(Cell<T,Descriptor>& cell, Array<T,Descriptor<T>::d> const& q);
    virtual void definePiNeq(Cell<T,Descriptor>& cell,
                                        Array<T,SymmetricTensor<T,Descriptor>::n> const& PiNeq);
    virtual void defineMoment(Cell<T,Descriptor>& cell, plint momentId, T const* value);
    virtual T computeRhoBar(Cell<T,Descriptor> const& cell) const;
    virtual void computeRhoBarJ(Cell<T,Descriptor> const& cell,
                                T& rhoBar, Array<T,Descriptor<T>::d>& j) const;
    virtual void computeRhoBarJPiNeq(Cell<T,Descriptor> const& cell,
                                     T& rhoBar, Array<T,Descriptor<T>::d>& j,
                                     Array<T,SymmetricTensor<T,Descriptor>::n>& PiNeq) const;
    virtual T computeEbar(Cell<T,Descriptor> const& cell) const;
private:
    std::vector<Cell<T,Descriptor>*>& baseCells;
    bool hasBulkCell;
};

template<typename T, template<typename U> class Descriptor>
class ConstParallelDynamics : public Dynamics<T,Descriptor> {
public:
    ConstParallelDynamics(std::vector<Cell<T,Descriptor> const*>& baseCells_, bool hasBulkCell_);
    virtual Dynamics<T,Descriptor>* clone() const;
    virtual void collide(Cell<T,Descriptor>& cell,
                         BlockStatistics& statistics_);
    virtual T computeEquilibrium(plint iPop, T rhoBar, Array<T,Descriptor<T>::d> const& j,
                                 T jSqr, T thetaBar=T()) const;
    virtual void regularize(Cell<T,Descriptor>& cell, T rhoBar, Array<T,Descriptor<T>::d> const& j,
                            T jSqr, Array<T,SymmetricTensor<T,Descriptor>::n> const& PiNeq, T thetaBar=T() ) const;
    virtual T computeDensity(Cell<T,Descriptor> const& cell) const;
    virtual T computePressure(Cell<T,Descriptor> const& cell) const;
    virtual void computeVelocity( Cell<T,Descriptor> const& cell,
                                  Array<T,Descriptor<T>::d>& u ) const;
    virtual T computeTemperature(Cell<T,Descriptor> const& cell) const;
    virtual void computePiNeq (
        Cell<T,Descriptor> const& cell, Array<T,SymmetricTensor<T,Descriptor>::n>& PiNeq ) const;
    virtual void computeShearStress (
        Cell<T,Descriptor> const& cell, Array<T,SymmetricTensor<T,Descriptor>::n>& stress ) const;
    virtual void computeHeatFlux( Cell<T,Descriptor> const& cell,
                                  Array<T,Descriptor<T>::d>& q ) const;
    virtual void computeMoment( Cell<T,Descriptor> const& cell,
                                plint momentId, T* moment ) const;
    virtual T getOmega() const;
    virtual void setOmega(T omega_);
    virtual T getParameter(plint whichParameter) const;
    virtual void setParameter(plint whichParameter, T value);
    virtual plint numDecomposedVariables(plint order) const;
    virtual void decompose(Cell<T,Descriptor> const& cell, std::vector<T>& rawData, plint order) const;
    virtual void recompose(Cell<T,Descriptor>& cell, std::vector<T> const& rawData, plint order) const;
    virtual void rescale(std::vector<T>& rawData, T xDxInv, T xDt, plint order) const;
    virtual void rescale(int dxScale, int dtScale) {
        Dynamics<T,Descriptor>::rescale(dxScale, dtScale);
    }
    virtual void getPopulations(Cell<T,Descriptor> const& cell, Array<T,Descriptor<T>::q>& f) const;
    virtual void getExternalField (
            Cell<T,Descriptor> const& cell, plint pos, plint size, T* ext ) const;
    virtual void setPopulations(Cell<T,Descriptor>& cell, Array<T,Descriptor<T>::q> const& f);
    virtual void setExternalField (
            Cell<T,Descriptor>& cell, plint pos, plint size, const T* ext);
    virtual void defineDensity(Cell<T,Descriptor>& cell, T density);
    virtual void defineVelocity(Cell<T,Descriptor>& cell, Array<T,Descriptor<T>::d> const& u);
    virtual void defineTemperature(Cell<T,Descriptor>& cell, T temperature);
    virtual void defineHeatFlux(Cell<T,Descriptor>& cell, Array<T,Descriptor<T>::d> const& q);
    virtual void definePiNeq(Cell<T,Descriptor>& cell,
                                        Array<T,SymmetricTensor<T,Descriptor>::n> const& PiNeq);
    virtual void defineMoment(Cell<T,Descriptor>& cell, plint momentId, T const* value);
    virtual T computeRhoBar(Cell<T,Descriptor> const& cell) const;
    virtual void computeRhoBarJ(Cell<T,Descriptor> const& cell,
                                T& rhoBar, Array<T,Descriptor<T>::d>& j) const;
    virtual void computeRhoBarJPiNeq(Cell<T,Descriptor> const& cell,
                                     T& rhoBar, Array<T,Descriptor<T>::d>& j,
                                     Array<T,SymmetricTensor<T,Descriptor>::n>& PiNeq) const;
    virtual T computeEbar(Cell<T,Descriptor> const& cell) const;
private:
    std::vector<Cell<T,Descriptor> const*>& baseCells;
    bool hasBulkCell;
};


#endif // PLB_MPI_PARALLEL

}  // namespace plb

#endif // defined PARALLEL_DYNAMICS_H