/usr/include/palabos/offLattice/voxelizer.hh is in libplb-dev 1.5~r1+repack1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 | /* This file is part of the Palabos library.
*
* Copyright (C) 2011-2015 FlowKit Sarl
* Route d'Oron 2
* 1010 Lausanne, Switzerland
* E-mail contact: contact@flowkit.com
*
* The most recent release of Palabos can be downloaded at
* <http://www.palabos.org/>
*
* The library Palabos is free software: you can redistribute it and/or
* modify it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of the
* License, or (at your option) any later version.
*
* The library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/* Main author: Orestis Malaspinas */
#ifndef VOXELIZER_HH
#define VOXELIZER_HH
#include "core/globalDefs.h"
#include "offLattice/voxelizer.h"
#include "atomicBlock/dataField3D.h"
#include "multiBlock/multiBlockGenerator3D.h"
namespace plb {
namespace voxelFlag {
inline int invert(int arg) {
switch(arg) {
case inside: return outside;
case outside: return inside;
case innerBorder: return outerBorder;
case outerBorder: return innerBorder;
case undetermined: return undetermined;
default:
PLB_ASSERT(false);
}
return undetermined;
}
inline int bulkFlag(int arg) {
if (arg==innerBorder || arg==inside) {
return inside;
}
else if (arg==outerBorder || arg==outside) {
return outside;
}
else {
return undetermined;
}
}
inline int borderFlag(int arg) {
if (arg==inside || arg==innerBorder) {
return innerBorder;
}
else if (arg==outside || arg==outerBorder) {
return outerBorder;
}
else {
return undetermined;
}
}
inline bool insideFlag(int arg) {
return arg==inside || arg==innerBorder;
}
inline bool outsideFlag(int arg) {
return arg==outside || arg==outerBorder;
}
} // namespace voxelFlag
template<typename T>
std::auto_ptr<MultiScalarField3D<int> > voxelize (
TriangularSurfaceMesh<T> const& mesh,
plint symmetricLayer, plint borderWidth )
{
Array<T,2> xRange, yRange, zRange;
mesh.computeBoundingBox(xRange, yRange, zRange);
// Creation of the multi-scalar field. The +1 is because if the resolution is N,
// the number of nodes is N+1.
plint nx = (plint)(xRange[1] - xRange[0]) + 1 + 2*symmetricLayer;
plint ny = (plint)(yRange[1] - yRange[0]) + 1 + 2*symmetricLayer;
plint nz = (plint)(zRange[1] - zRange[0]) + 1 + 2*symmetricLayer;
return voxelize(mesh, Box3D(0,nx-1, 0,ny-1, 0,nz-1), borderWidth);
}
template<typename T>
std::auto_ptr<MultiScalarField3D<int> > voxelize (
TriangularSurfaceMesh<T> const& mesh,
Box3D const& domain, plint borderWidth )
{
// As initial seed, a one-cell layer around the outer boundary is tagged
// as ouside cells.
plint envelopeWidth=1;
std::auto_ptr<MultiScalarField3D<int> > voxelMatrix
= generateMultiScalarField<int>(domain, voxelFlag::outside, envelopeWidth);
setToConstant(*voxelMatrix, voxelMatrix->getBoundingBox().enlarge(-1),
voxelFlag::undetermined);
MultiContainerBlock3D hashContainer(*voxelMatrix);
std::vector<MultiBlock3D*> container_arg;
container_arg.push_back(&hashContainer);
applyProcessingFunctional (
new CreateTriangleHash<T>(mesh),
hashContainer.getBoundingBox(), container_arg );
std::vector<MultiBlock3D*> flag_hash_arg;
flag_hash_arg.push_back(voxelMatrix.get());
flag_hash_arg.push_back(&hashContainer);
voxelMatrix->resetFlags(); // Flags are used internally by VoxelizeMeshFunctional3D.
while (!allFlagsTrue(voxelMatrix.get())) {
applyProcessingFunctional (
new VoxelizeMeshFunctional3D<T>(mesh),
voxelMatrix->getBoundingBox(), flag_hash_arg );
}
detectBorderLine(*voxelMatrix, voxelMatrix->getBoundingBox(), borderWidth);
return std::auto_ptr<MultiScalarField3D<int> >(voxelMatrix);
}
template<typename T>
std::auto_ptr<MultiScalarField3D<int> > voxelize (
TriangularSurfaceMesh<T> const& mesh,
Box3D const& domain, plint borderWidth, Box3D seed )
{
// As initial seed, a one-cell layer around the outer boundary is tagged
// as ouside cells.
plint envelopeWidth=1;
std::auto_ptr<MultiScalarField3D<int> > voxelMatrix
= generateMultiScalarField<int>(domain, voxelFlag::undetermined, envelopeWidth);
setToConstant(*voxelMatrix, seed, voxelFlag::outside);
MultiContainerBlock3D hashContainer(*voxelMatrix);
std::vector<MultiBlock3D*> container_arg;
container_arg.push_back(&hashContainer);
applyProcessingFunctional (
new CreateTriangleHash<T>(mesh),
hashContainer.getBoundingBox(), container_arg );
std::vector<MultiBlock3D*> flag_hash_arg;
flag_hash_arg.push_back(voxelMatrix.get());
flag_hash_arg.push_back(&hashContainer);
voxelMatrix->resetFlags(); // Flags are used internally by VoxelizeMeshFunctional3D.
plint maxIteration=100;
plint i=0;
while (!allFlagsTrue(voxelMatrix.get()) && i<maxIteration) {
applyProcessingFunctional (
new VoxelizeMeshFunctional3D<T>(mesh),
voxelMatrix->getBoundingBox(), flag_hash_arg );
++i;
}
if (i==maxIteration) {
pcout << "Warning: Voxelization failed." << std::endl;
}
detectBorderLine(*voxelMatrix, voxelMatrix->getBoundingBox(), borderWidth);
return std::auto_ptr<MultiScalarField3D<int> >(voxelMatrix);
}
template<typename T>
std::auto_ptr<MultiScalarField3D<int> > revoxelize (
TriangularSurfaceMesh<T> const& mesh,
MultiScalarField3D<int>& oldVoxelMatrix,
MultiContainerBlock3D& hashContainer, plint borderWidth )
{
// As initial seed, a one-cell layer around the outer boundary is tagged
// as ouside cells.
Box3D domain(oldVoxelMatrix.getBoundingBox());
std::auto_ptr<MultiScalarField3D<int> > voxelMatrix (
new MultiScalarField3D<int>((MultiBlock3D&)oldVoxelMatrix) );
setToConstant(*voxelMatrix, domain, voxelFlag::outside);
setToConstant(*voxelMatrix, voxelMatrix->getBoundingBox().enlarge(-1),
voxelFlag::undetermined);
std::vector<MultiBlock3D*> flag_hash_arg;
flag_hash_arg.push_back(voxelMatrix.get());
flag_hash_arg.push_back(&hashContainer);
voxelMatrix->resetFlags(); // Flags are used internally by VoxelizeMeshFunctional3D.
while (!allFlagsTrue(voxelMatrix.get())) {
applyProcessingFunctional (
new VoxelizeMeshFunctional3D<T>(mesh),
voxelMatrix->getBoundingBox(), flag_hash_arg );
}
detectBorderLine(*voxelMatrix, voxelMatrix->getBoundingBox(), borderWidth);
return std::auto_ptr<MultiScalarField3D<int> >(voxelMatrix);
}
/* ******** VoxelizeMeshFunctional3D ************************************* */
template<typename T>
VoxelizeMeshFunctional3D<T>::VoxelizeMeshFunctional3D (
TriangularSurfaceMesh<T> const& mesh_)
: mesh(mesh_)
{ }
template<typename T>
bool VoxelizeMeshFunctional3D<T>::distanceToSurface (
AtomicContainerBlock3D& hashContainer,
Array<T,3> const& point, T& distance, bool& isBehind ) const
{
T maxDistance = std::sqrt((T)3);
Array<T,2> xRange(point[0]-maxDistance, point[0]+maxDistance);
Array<T,2> yRange(point[1]-maxDistance, point[1]+maxDistance);
Array<T,2> zRange(point[2]-maxDistance, point[2]+maxDistance);
TriangleHash<T> triangleHash(hashContainer);
std::vector<plint> possibleTriangles;
triangleHash.getTriangles(xRange, yRange, zRange, possibleTriangles);
T tmpDistance;
bool tmpIsBehind;
bool triangleFound = false;
for (pluint iPossible=0; iPossible<possibleTriangles.size(); ++iPossible) {
plint iTriangle = possibleTriangles[iPossible];
mesh.distanceToTriangle (
point, iTriangle, tmpDistance, tmpIsBehind );
if( !triangleFound || tmpDistance<distance) {
distance = tmpDistance;
isBehind = tmpIsBehind;
triangleFound = true;
}
}
return triangleFound;
}
template<typename T>
bool VoxelizeMeshFunctional3D<T>::checkIfFacetsCrossed (
AtomicContainerBlock3D& hashContainer,
Array<T,3> const& point1, Array<T,3> const& point2,
T& distance, plint& whichTriangle )
{
Array<T,2> xRange (
std::min(point1[0], point2[0]),
std::max(point1[0], point2[0]) );
Array<T,2> yRange (
std::min(point1[1], point2[1]),
std::max(point1[1], point2[1]) );
Array<T,2> zRange (
std::min(point1[2], point2[2]),
std::max(point1[2], point2[2]) );
TriangleHash<T> triangleHash(hashContainer);
std::vector<plint> possibleTriangles;
triangleHash.getTriangles(xRange, yRange, zRange, possibleTriangles);
int flag = 0; // Check for crossings inside the point1-point2 segment.
Array<T,3> intersection; // Dummy variable.
Array<T,3> normal; // Dummy variable.
T tmpDistance; // Dummy variable.
if (global::counter("voxelizer-debug").getCount()==1) {
std::cout << "{";
}
std::vector<T> crossings;
for (pluint iPossible=0; iPossible<possibleTriangles.size(); ++iPossible) {
plint iTriangle = possibleTriangles[iPossible];
if (mesh.pointOnTriangle(point1, point2, flag, iTriangle, intersection, normal, tmpDistance)==1) {
if (global::counter("voxelizer-debug").getCount()==1) {
std::cout << "(" << iTriangle << ";" << tmpDistance << ")";
}
crossings.push_back(tmpDistance);
if (crossings.size()==1 || tmpDistance<distance) {
distance = tmpDistance;
whichTriangle = iTriangle;
}
}
}
if (global::counter("voxelizer-debug").getCount()==1) {
std::cout << "}";
}
if (crossings.size()==0) {
return false;
}
else {
bool hasCrossed = true;
for (pluint iCrossing=1; iCrossing<crossings.size(); ++iCrossing) {
//const T eps1 = std::numeric_limits<double>::epsilon()*1.e2;
//if ( !util::fpequal(crossings[iCrossing], crossings[iCrossing-1], eps1) )
//const T eps1 = std::numeric_limits<double>::epsilon()*1.e4;
const T eps1 = std::numeric_limits<double>::epsilon()*1.e4;
if ( std::fabs(crossings[iCrossing]-crossings[iCrossing-1])>eps1)
{
hasCrossed = !hasCrossed;
}
}
return hasCrossed;
}
}
template<typename T>
bool VoxelizeMeshFunctional3D<T>::createVoxelizationRange (
Box3D const& domain, ScalarField3D<int>& voxels,
Array<plint,2>& xRange, Array<plint,2>& yRange, Array<plint,2>& zRange )
{
// The purpose of the first three loops is to locate the eight
// corners of the cube. One voxel per corner would be insufficient
// because a potential seed is situated differently, depending on
// whether it is on the boundary of the multi-block or somewhere inside.
for (plint dx=0; dx<=+1; ++dx) {
plint xMin = domain.x0+dx*domain.getNx()-1;
plint xMax = domain.x0+dx*domain.getNx();
for (plint dy=0; dy<=+1; ++dy) {
plint yMin = domain.y0+dy*domain.getNy()-1;
plint yMax = domain.y0+dy*domain.getNy();
for (plint dz=0; dz<=+1; ++dz) {
plint zMin = domain.z0+dz*domain.getNz()-1;
plint zMax = domain.z0+dz*domain.getNz();
// Locate a potential seed in one of the corners.
for (plint iX=xMin; iX<=xMax; ++iX) {
for (plint iY=yMin; iY<=yMax; ++iY) {
for (plint iZ=zMin; iZ<=zMax; ++iZ) {
if (voxels.get(iX,iY,iZ) != voxelFlag::undetermined) {
xRange[0] = domain.x0+dx*(domain.getNx()-1);
xRange[1] = domain.x0+(1-dx)*(domain.getNx()-1);
yRange[0] = domain.y0+dy*(domain.getNy()-1);
yRange[1] = domain.y0+(1-dy)*(domain.getNy()-1);
zRange[0] = domain.z0+dz*(domain.getNz()-1);
zRange[1] = domain.z0+(1-dz)*(domain.getNz()-1);
return true;
}
}
}
}
}
}
}
return false;
}
template<typename T>
void VoxelizeMeshFunctional3D<T>::printOffender (
ScalarField3D<int> const& voxels,
AtomicContainerBlock3D& hashContainer,
Dot3D pos )
{
std::set<plint> triangles;
Dot3D offset = voxels.getLocation();
Dot3D pos_ = pos+offset;
std::cout << "Position (" << pos_.x << "," << pos_.y << "," << pos_.z << ")" << std::endl;
for (plint dx=-1; dx<=+1; ++dx) {
for (plint dy=-1; dy<=+1; ++dy) {
for (plint dz=-1; dz<=+1; ++dz) {
if (!(dx==0 && dy==0 && dz==0)) {
Dot3D neigh = pos+offset+Dot3D(dx,dy,dz);
int typeOfNeighbor = voxels.get(pos.x+dx,pos.y+dy,pos.z+dz);
if (typeOfNeighbor!=voxelFlag::undetermined) {
T distance;
plint whichTriangle;
Array<T,3> p1(pos_.x,pos_.y,pos_.z);
Array<T,3> p2(neigh.x,neigh.y,neigh.z);
global::counter("voxelizer-debug").increment(1);
bool crossed = checkIfFacetsCrossed (
hashContainer, p1, p2, distance, whichTriangle);
global::counter("voxelizer-debug").reset();
std::cout << "Neighbor ("
<< dx << "," << dy << "," << dz
<< "); is "
<< (voxelFlag::insideFlag(typeOfNeighbor) ? "inside" : "outside");
if (crossed) {
triangles.insert(whichTriangle);
std::cout
<< " inters. at distance " << distance
<< " with triangle " << whichTriangle << std::endl;
}
else {
std::cout << " no inters." << std::endl;
}
}
}
}
}
}
std::set<plint>::iterator it = triangles.begin();
for (; it!=triangles.end(); ++it) {
std::cout << "Triangle " << *it << " [" << std::flush;
Array<T,3> p0 = mesh.getVertex(*it, 0);
Array<T,3> p1 = mesh.getVertex(*it, 1);
Array<T,3> p2 = mesh.getVertex(*it, 2);
std::cout << p0[0] << " " << p1[0] << " " << p2[0] << " " << p0[0] << "], ["
<< p0[1] << " " << p1[1] << " " << p2[1] << " " << p0[1] << "], ["
<< p0[2] << " " << p1[2] << " " << p2[2] << " " << p0[2] << "]" << std::endl;
}
}
template<typename T>
bool VoxelizeMeshFunctional3D<T>::voxelizeFromNeighbor (
ScalarField3D<int> const& voxels,
AtomicContainerBlock3D& hashContainer,
Dot3D pos, Dot3D neighbor, int& voxelType )
{
int verificationLevel = 0;
Dot3D offset = voxels.getLocation();
int typeOfNeighbor = voxels.get(neighbor.x,neighbor.y,neighbor.z);
if (typeOfNeighbor==voxelFlag::undetermined) {
return true;
}
// If there is no verification and the voxel has already been voxelized,
// it is not being re-voxelized here.
if (verificationLevel==0) {
if (voxelType!=voxelFlag::undetermined) {
return true;
}
}
Dot3D pos_ = pos+offset;
Dot3D neighbor_ = neighbor+offset;
Array<T,3> point1((T)pos_.x, (T)pos_.y, (T)pos_.z);
Array<T,3> point2((T)neighbor_.x, (T)neighbor_.y, (T)neighbor_.z);
int newVoxelType = voxelFlag::undetermined;
T distance1, distance2, distance3, distance4;
bool isBehind1, isBehind2;
plint whichTriangle1, whichTriangle2;
if (checkIfFacetsCrossed(hashContainer, point1, point2, distance1, whichTriangle1)) {
newVoxelType = voxelFlag::invert(typeOfNeighbor);
// Additional consistency checks only at the ultimate level of verification.
if (verificationLevel==2) {
PLB_ASSERT( distance1 < std::sqrt((T)3)+(T)0.0001 );
#ifdef PLB_DEBUG
bool ok = checkIfFacetsCrossed(hashContainer, point2, point1, distance2, whichTriangle2);
#else
(void) checkIfFacetsCrossed(hashContainer, point2, point1, distance2, whichTriangle2);
#endif
PLB_ASSERT( ok );
PLB_ASSERT( distance2 < std::sqrt((T)3)+(T)0.0001 );
#ifdef PLB_DEBUG
bool ok1 = distanceToSurface( hashContainer, point1, distance3, isBehind1 );
#else
(void) distanceToSurface( hashContainer, point1, distance3, isBehind1 );
#endif
PLB_ASSERT( ok1 );
PLB_ASSERT( distance1 < std::sqrt((T)3)+(T)0.0001 );
// Attention: At this moment, the following consistency check fails sometimes,
// god knows why. It might be that there is a bug in the method
// mesh.distanceToSurface.
PLB_ASSERT( (voxelFlag::insideFlag(newVoxelType) && isBehind1) ||
(voxelFlag::outsideFlag(newVoxelType) && !isBehind1) );
#ifdef PLB_DEBUG
bool ok2 = distanceToSurface( hashContainer, point2, distance4, isBehind2 );
#else
(void) distanceToSurface( hashContainer, point2, distance4, isBehind2 );
#endif
PLB_ASSERT( ok2 );
PLB_ASSERT( distance2 < std::sqrt((T)3)+(T)0.0001 );
PLB_ASSERT ( (voxelFlag::insideFlag(typeOfNeighbor) && isBehind2) ||
(voxelFlag::outsideFlag(typeOfNeighbor) && !isBehind2) );
}
}
else {
newVoxelType = typeOfNeighbor;
}
int oldVoxelType = voxelType;
voxelType = newVoxelType;
if (oldVoxelType == voxelFlag::undetermined) {
return true;
}
else {
return oldVoxelType == newVoxelType;
}
}
template<typename T>
void VoxelizeMeshFunctional3D<T>::processGenericBlocks (
Box3D domain, std::vector<AtomicBlock3D*> blocks )
{
PLB_PRECONDITION( blocks.size()==2 );
ScalarField3D<int>* voxels =
dynamic_cast<ScalarField3D<int>*>(blocks[0]);
PLB_ASSERT( voxels );
AtomicContainerBlock3D* container =
dynamic_cast<AtomicContainerBlock3D*>(blocks[1]);
PLB_ASSERT( container );
// Return if this block is already voxelized.
if (voxels->getFlag()) {
return;
}
Array<plint,2> xRange, yRange, zRange;
if (!createVoxelizationRange(domain, *voxels, xRange, yRange, zRange)) {
// If no seed has been found in the envelope, just return and wait
// for the next round.
return;
}
// Specify if the loops go in positive or negative direction.
plint xIncr = xRange[1]>xRange[0] ? 1 : -1;
plint yIncr = yRange[1]>yRange[0] ? 1 : -1;
plint zIncr = zRange[1]>zRange[0] ? 1 : -1;
// The ranges are closed on both ends. Here, the range[1] end
// is converted to an open one so we can use != checks in the loops.
xRange[1] += xIncr;
yRange[1] += yIncr;
zRange[1] += zIncr;
for (plint iX=xRange[0]; iX!=xRange[1]; iX+=xIncr) {
for (plint iY=yRange[0]; iY!=yRange[1]; iY+=yIncr) {
for (plint iZ=zRange[0]; iZ!=zRange[1]; iZ+=zIncr) {
Dot3D pos(iX,iY,iZ);
int voxelType = voxels->get(iX,iY,iZ);
if (voxelType==voxelFlag::undetermined) {
for (plint dx=-1; dx<=+1; ++dx) {
for (plint dy=-1; dy<=+1; ++dy) {
for (plint dz=-1; dz<=+1; ++dz) {
if (!(dx==0 && dy==0 && dz==0)) {
Dot3D neighbor(iX+dx, iY+dy, iZ+dz);
bool ok = voxelizeFromNeighbor (
*voxels, *container,
pos, neighbor, voxelType );
if (!ok) {
printOffender(*voxels, *container, pos);
}
PLB_ASSERT( ok );
}
}
}
}
voxels->get(iX,iY,iZ) = voxelType;
}
}
}
}
// Indicate that this atomic-block has been voxelized.
voxels->setFlag(true);
}
template<typename T>
VoxelizeMeshFunctional3D<T>* VoxelizeMeshFunctional3D<T>::clone() const {
return new VoxelizeMeshFunctional3D<T>(*this);
}
template<typename T>
void VoxelizeMeshFunctional3D<T>::getTypeOfModification(std::vector<modif::ModifT>& modified) const {
modified[0] = modif::staticVariables; // Voxels
modified[1] = modif::nothing; // Hash Container
}
template<typename T>
BlockDomain::DomainT VoxelizeMeshFunctional3D<T>::appliesTo() const {
return BlockDomain::bulk;
}
/* ******** DetectBorderLineFunctional3D ************************************* */
template<typename T>
void detectBorderLine( MultiScalarField3D<T>& voxelMatrix,
Box3D const& domain, plint borderWidth )
{
applyProcessingFunctional( new DetectBorderLineFunctional3D<T>(borderWidth),
domain, voxelMatrix );
}
template<typename T>
DetectBorderLineFunctional3D<T>::DetectBorderLineFunctional3D(plint borderWidth_)
: borderWidth(borderWidth_)
{ }
template<typename T>
void DetectBorderLineFunctional3D<T>::process (
Box3D domain, ScalarField3D<T>& voxels )
{
for (plint iX = domain.x0; iX <= domain.x1; ++iX) {
for (plint iY = domain.y0; iY <= domain.y1; ++iY) {
for (plint iZ = domain.z0; iZ <= domain.z1; ++iZ) {
for (plint dx=-borderWidth; dx<=borderWidth; ++dx)
for (plint dy=-borderWidth; dy<=borderWidth; ++dy)
for (plint dz=-borderWidth; dz<=borderWidth; ++dz)
if(!(dx==0 && dy==0 && dz==0)) {
plint nextX = iX + dx;
plint nextY = iY + dy;
plint nextZ = iZ + dz;
if (contained(Dot3D(nextX,nextY,nextZ),voxels.getBoundingBox())) {
if ( voxelFlag::outsideFlag(voxels.get(iX,iY,iZ)) &&
voxelFlag::insideFlag(voxels.get(nextX,nextY,nextZ)) )
{
voxels.get(iX,iY,iZ) = voxelFlag::outerBorder;
}
if ( voxelFlag::insideFlag(voxels.get(iX,iY,iZ)) &&
voxelFlag::outsideFlag(voxels.get(nextX,nextY,nextZ)) )
{
voxels.get(iX,iY,iZ) = voxelFlag::innerBorder;
}
}
}
}
}
}
}
template<typename T>
DetectBorderLineFunctional3D<T>* DetectBorderLineFunctional3D<T>::clone() const {
return new DetectBorderLineFunctional3D<T>(*this);
}
template<typename T>
void DetectBorderLineFunctional3D<T>::getTypeOfModification(std::vector<modif::ModifT>& modified) const {
modified[0] = modif::staticVariables;
}
template<typename T>
BlockDomain::DomainT DetectBorderLineFunctional3D<T>::appliesTo() const {
return BlockDomain::bulk;
}
} // namespace plb
#endif // VOXELIZER_HH
|