/usr/include/palabos/offLattice/triangleBoundary3D.h is in libplb-dev 1.5~r1+repack1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 | /* This file is part of the Palabos library.
*
* Copyright (C) 2011-2015 FlowKit Sarl
* Route d'Oron 2
* 1010 Lausanne, Switzerland
* E-mail contact: contact@flowkit.com
*
* The most recent release of Palabos can be downloaded at
* <http://www.palabos.org/>
*
* The library Palabos is free software: you can redistribute it and/or
* modify it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of the
* License, or (at your option) any later version.
*
* The library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef TRIANGLE_BOUNDARY_3D_H
#define TRIANGLE_BOUNDARY_3D_H
#include "core/globalDefs.h"
#include "core/geometry3D.h"
#include "offLattice/boundaryShapes3D.h"
#include "offLattice/triangleSet.h"
#include "offLattice/triangularSurfaceMesh.h"
#include "offLattice/offLatticeBoundaryProfiles3D.h"
#include "particles/multiParticleField3D.h"
#include "multiBlock/redistribution3D.h"
#include "multiBlock/multiDataField3D.h"
#include "atomicBlock/atomicContainerBlock3D.h"
#include "multiBlock/multiContainerBlock3D.h"
#include <stack>
namespace plb {
template<typename T>
class DEFscaledMesh {
public:
DEFscaledMesh(TriangleSet<T> const& triangleSet_);
DEFscaledMesh (
TriangleSet<T> const& triangleSet_,
plint resolution_, plint referenceDirection_,
plint margin_, plint extraLayer );
DEFscaledMesh (
TriangleSet<T> const& triangleSet_,
plint resolution_, plint referenceDirection_,
plint margin_, Dot3D location );
DEFscaledMesh(DEFscaledMesh<T> const& rhs);
~DEFscaledMesh();
DEFscaledMesh<T>& operator=(DEFscaledMesh<T> const& rhs);
void swap(DEFscaledMesh<T>& rhs);
public: // Mesh usage interface.
/// Get a reference to the currently active mesh.
TriangularSurfaceMesh<T>& getMesh();
/// Get a const reference to the currently active mesh.
TriangularSurfaceMesh<T> const& getMesh() const;
plint getMargin() const;
std::vector<Array<T,3> > const& getVertexList() const {
return vertexList;
}
std::vector<plint> const& getEmanatingEdgeList() const {
return emanatingEdgeList;
}
std::vector<Edge> const& getEdgeList() const {
return edgeList;
}
Array<T,3> getPhysicalLocation() const {
return physicalLocation;
}
T getDx() const {
return dx;
}
void setPhysicalLocation(Array<T,3> physicalLocation_) {
physicalLocation = physicalLocation_;
}
void setDx(T dx_) {
dx = dx_;
}
private:
void initialize (
TriangleSet<T> const& triangleSet_, plint resolution_,
plint referenceDirection_, Dot3D location );
private:
std::vector<Array<T,3> > vertexList;
/// Each vertex has exactly one emanating edge. This is a structural
/// information.
std::vector<plint> emanatingEdgeList;
/// Edges are a structural information.
std::vector<Edge> edgeList;
TriangularSurfaceMesh<T>* mesh;
plint margin;
Array<T,3> physicalLocation;
T dx;
};
template<typename T>
struct VertexProperty3D {
virtual ~VertexProperty3D() { }
// Wall portions which should not follow the laws of elasticity are rigid.
virtual bool isRigid() const =0;
// Inlet/outlet nodes are for example not part of the wall.
virtual bool isWall() const =0;
virtual VertexProperty3D<T>* clone() const =0;
};
template<typename T>
struct RigidWallProperty3D : public VertexProperty3D<T> {
virtual bool isRigid() const { return true; }
virtual bool isWall() const { return true; }
virtual RigidWallProperty3D<T>* clone() const {
return new RigidWallProperty3D<T>(*this);
}
};
template<typename T>
struct InletOutletProperty3D : public VertexProperty3D<T> {
virtual bool isRigid() const { return true; }
virtual bool isWall() const { return false; }
virtual InletOutletProperty3D<T>* clone() const {
return new InletOutletProperty3D<T>(*this);
}
};
template<typename T>
bool isRigid(VertexProperty3D<T> const* property) {
if (property) {
return property->isRigid();
}
else {
return false;
}
}
template<typename T>
bool isWall(VertexProperty3D<T> const* property) {
if (property) {
return property->isWall();
}
else {
return true;
}
}
template<typename T> class TriangleBoundary3D;
template<typename T, class SurfaceData>
class BoundaryProfiles3D {
public:
BoundaryProfiles3D();
~BoundaryProfiles3D();
BoundaryProfiles3D(BoundaryProfiles3D<T,SurfaceData> const& rhs);
BoundaryProfiles3D<T,SurfaceData>& operator=(BoundaryProfiles3D<T,SurfaceData> const& rhs);
void swap(BoundaryProfiles3D<T,SurfaceData>& rhs);
void defineProfile(plint tag, BoundaryProfile3D<T,SurfaceData>* profile);
void resetProfiles(std::map<plint,BoundaryProfile3D<T,SurfaceData>*> profiles_);
void defineInletOutletTags(TriangleBoundary3D<T> const& boundary, plint sortDirection);
void setWallProfile(BoundaryProfile3D<T,SurfaceData>* wallProfile_);
void setInletOutlet( std::vector<BoundaryProfile3D<T,SurfaceData>*> inletOutlets );
void setInletOutlet( BoundaryProfile3D<T,SurfaceData>* profile1, BoundaryProfile3D<T,SurfaceData>* profile2 );
void setInletOutlet( BoundaryProfile3D<T,SurfaceData>* profile1, BoundaryProfile3D<T,SurfaceData>* profile2,
BoundaryProfile3D<T,SurfaceData>* profile3 );
void setInletOutlet( BoundaryProfile3D<T,SurfaceData>* profile1, BoundaryProfile3D<T,SurfaceData>* profile2,
BoundaryProfile3D<T,SurfaceData>* profile3, BoundaryProfile3D<T,SurfaceData>* profile4 );
void adjustInletOutlet(TriangleBoundary3D<T> const& boundary, plint sortDirection);
BoundaryProfile3D<T,SurfaceData> const& getProfile (
TriangleBoundary3D<T> const& boundary, plint iTriangle ) const;
private:
void replaceProfile(plint id, BoundaryProfile3D<T,SurfaceData>* newProfile);
void clearProfiles();
private:
BoundaryProfile3D<T,SurfaceData>* wallProfile;
std::map<plint,BoundaryProfile3D<T,SurfaceData>*> profiles;
std::vector<plint> inletOutletIds;
std::vector<Array<T,3> > lidNormal;
std::vector<Array<T,3> > lidCenter;
std::vector<T> lidRadius;
};
template<typename T>
class TriangleBoundary3D {
public:
template<typename TMesh>
TriangleBoundary3D(DEFscaledMesh<TMesh> const& defMesh, bool automaticCloseHoles=true);
TriangleBoundary3D(DEFscaledMesh<T> const& defMesh, bool automaticCloseHoles=true);
~TriangleBoundary3D();
TriangleBoundary3D(TriangleBoundary3D<T> const& rhs);
TriangleBoundary3D<T>& operator=(TriangleBoundary3D<T> const& rhs);
void swap(TriangleBoundary3D<T>& rhs);
public: // Mesh usage interface.
/// Select the mesh which is subsequently being referred to in calls to
/// the methods of this class.
TriangleBoundary3D<T> const& select (
plint whichTopology, plint whichVertices ) const;
/// Select the mesh which is subsequently being referred to in calls to
/// the methods of this class. Save the previous selection, which
/// can be recovered through a call to popSelect.
TriangleBoundary3D<T> const& pushSelect (
plint whichTopology, plint whichVertices ) const;
/// Recover the previous selection of the mesh, stored through a
/// call to pushSelect.
TriangleBoundary3D<T> const& popSelect() const;
void getSelection(plint& whichTopology, plint& whichVertices) const;
/// Get a reference to the currently active mesh.
TriangularSurfaceMesh<T>& getMesh();
/// Get a const reference to the currently active mesh.
TriangularSurfaceMesh<T> const& getMesh() const;
/// Get the material property (for example the elasticity constants)
/// implemented on a given vertex (the answer is independent of the
/// currently active mesh).
VertexProperty3D<T> const* getVertexProperty(plint iVertex) const;
/// Get intersection between a line segment (fromPoint,fromPoint+direction)
/// and a given triangle in the currently active mesh; return true incase
/// of success.
bool intersectSegment (
plint iTriangle, AtomicBlock3D* boundaryArg,
Array<T,3> const& fromPoint, Array<T,3> const& direction,
Array<T,3>& locatedPoint, T& distance, Array<T,3>& wallNormal ) const;
/// Given a point p on the surface of the shape, determine its "continuous normal".
/// If the shape is for example piecewise linear, the normal is adjusted to vary
/// continuously over the surface.
Array<T,3> computeContinuousNormal (
Array<T,3> const& p, plint iTriangle, bool isAreaWeighted = false ) const;
/// Create a new set of vertices, and an associated open and closed mesh.
void cloneVertexSet(plint whichVertexSet);
/// Coordinates of the lower-left corner in physical units.
Array<T,3> getPhysicalLocation() const {
return physicalLocation;
}
/// Size of a grid spacing.
T getDx() const {
return dx;
}
public: // Mesh preparation interface.
/// Get a list of all inlets and outlets (no specific sorting order).
std::vector<Lid> const& getInletOutlet() const;
/// Get a list of all inlets and outlets, sorted along a given direction.
/** This information can be used as a hint to select the boundary condition
* associated to each inlet/outlet. Access the variable lid.baryCenter
* to know the location of a given inlet/outlet.
**/
std::vector<Lid> getInletOutlet(plint sortDirection) const;
template<typename DomainFunctional> plint tagDomain(DomainFunctional functional);
template<typename DomainFunctional> plint tagDomain(DomainFunctional functional, Array<T,3> normal, T angleTolerance, plint previousTag=-1);
/// Tag all lids whose barycenters are inside the given cuboid and return the integer tag.
plint tagLids(Cuboid<T> const& c);
std::vector<plint> getInletOutletIds(plint sortDirection) const;
void getLidProperties (
plint sortDirection, std::vector<Array<T,3> >& normal,
std::vector<Array<T,3> >& center, std::vector<T>& radius ) const;
/// Define the material property to be used on all vertices contained in
/// the domain specified by the domain functional.
/** Returns the tag which was assigned to the corresponding vertices. **/
template<typename DomainFunctional>
plint setVertexProperty (
VertexProperty3D<T> const& property, DomainFunctional functional );
plint getMargin() const;
/// Return the tag (id of boundary-portion with specific boundary condition)
/// of a triangle.
plint getTag(plint iTriangle) const;
std::vector<plint> const& getTriangleTags() const { return triangleTagList; }
std::vector<plint> const& getVertexTags() const { return vertexTagList; }
private:
plint currentMesh() const;
void defineMeshes();
/// Detect holes, close them and register them as potential inlets/outlets.
/// They are default initialized to no-slip. Use setInletOutlet to assign
/// different conditions.
void closeHoles();
void assignLidVertexProperty();
private:
/// Assign a new tag to all triangles corresponding to one of the provided inlets/outlets.
/// The tag is taken in increasing integer value according to a sorting
/// or the inlets/outlets along the given space direction.
void tagInletOutlet (
std::vector<Lid> const& newLids );
/// There may exist more than one set of vertices, for example in
/// case of a moving wall which has current vertex positions and
/// equilibrium vertex positions.
std::vector< std::vector<Array<T,3> > > vertexLists;
/// Each vertex has exactly one emanating edge. This is a structural
/// information which is identical for all sets of vertices.
std::vector<plint> emanatingEdgeLists[2];
/// Edges are a structural information which is shared by all sets
/// of vertices.
std::vector<Edge> edgeLists[2];
/// For each set of vertices there is a mesh, with a reference to the
/// given vertices (individual to each mesh) and to the
/// emanatingEdgeList and edgeList (same for all meshes).
std::vector<TriangularSurfaceMesh<T> > meshes;
/// The triangle type is an indirect index which links to the boundary
/// condition implemented by each triangle and defined in boundaryProfiles.
std::vector<plint> triangleTagList;
plint currentTagNum;
/// The vertex type is an indirect index which links to generic material
/// properties implemented at that vertex and defined in vertexProperties.
std::vector<plint> vertexTagList;
/// Vertex properties, indexed by the vertex type in vertexTagList.
std::vector<VertexProperty3D<T>*> vertexProperties;
/// Inlets and outlets, saved as a collection of triangles.
std::vector<Lid> lids;
plint margin;
Array<T,3> physicalLocation;
T dx;
mutable std::stack<plint> topology;
mutable std::stack<plint> vertexSet;
};
template< typename T, class SurfaceData >
class TriangleFlowShape3D : public BoundaryShape3D<T,SurfaceData> {
public:
TriangleFlowShape3D (
TriangleBoundary3D<T> const& boundary_,
BoundaryProfiles3D<T,SurfaceData> const& profiles_ );
virtual bool isInside(Dot3D const& location) const;
virtual bool pointOnSurface (
Array<T,3> const& fromPoint, Array<T,3> const& direction,
Array<T,3>& locatedPoint, T& distance,
Array<T,3>& wallNormal, SurfaceData& surfaceData,
OffBoundary::Type& bdType, plint& id ) const;
virtual Array<T,3> computeContinuousNormal (
Array<T,3> const& p, plint id, bool isAreaWeighted = false ) const;
virtual bool intersectsSurface (
Array<T,3> const& p1, Array<T,3> const& p2, plint& id ) const;
virtual plint getTag(plint id) const;
virtual bool distanceToSurface( Array<T,3> const& point,
T& distance, bool& isBehind ) const;
virtual TriangleFlowShape3D<T,SurfaceData>* clone() const;
/// Use this clone function to provide the meshed data to this object.
/** The arguments are:
* 0: The voxel flags (ScalarField3D<T>),
* 1: The hash container (AtomicContainerBlock3D),
* 2: The boundary argument: an additional argument needed by BoundaryProfiles
* in order to compute the boundary condition. In dynamic walls this is for
* example often a MultiParticleField, used to determined the wall velocity.
**/
virtual TriangleFlowShape3D<T,SurfaceData>*
clone(std::vector<AtomicBlock3D*> args) const;
private:
TriangleBoundary3D<T> const& boundary;
BoundaryProfiles3D<T,SurfaceData> const& profiles;
/// Data from previous voxelization.
ScalarField3D<int>* voxelFlags;
/// Needed for fast access to the mesh.
AtomicContainerBlock3D* hashContainer;
AtomicBlock3D* boundaryArg;
};
template<typename T>
class VoxelizedDomain3D {
public:
VoxelizedDomain3D(TriangleBoundary3D<T> const& boundary_,
int flowType_, plint extraLayer_, plint borderWidth_,
plint envelopeWidth_, plint blockSize_,
plint gridLevel_=0, bool dynamicMesh_ = false);
VoxelizedDomain3D(TriangleBoundary3D<T> const& boundary_,
int flowType_, Box3D const& boundingBox, plint borderWidth_,
plint envelopeWidth_, plint blockSize_,
plint gridLevel_=0, bool dynamicMesh_ = false);
VoxelizedDomain3D(TriangleBoundary3D<T> const& boundary_,
int flowType_, Box3D const& boundingBox, plint borderWidth_,
plint envelopeWidth_, plint blockSize_,
Box3D const& seed,
plint gridLevel_=0, bool dynamicMesh_ = false);
VoxelizedDomain3D(VoxelizedDomain3D<T> const& rhs);
~VoxelizedDomain3D();
MultiScalarField3D<int>& getVoxelMatrix();
MultiScalarField3D<int> const& getVoxelMatrix() const;
MultiContainerBlock3D& getTriangleHash();
MultiBlockManagement3D const& getMultiBlockManagement() const;
template<class ParticleFieldT>
void adjustVoxelization(MultiParticleField3D<ParticleFieldT>& particles, bool dynamicMesh);
void reparallelize(MultiBlockRedistribute3D const& redistribute);
TriangleBoundary3D<T> const& getBoundary() const { return boundary; }
int getFlowType() const { return flowType; }
private:
VoxelizedDomain3D<T>& operator=(VoxelizedDomain3D<T> const& rhs) { }
void createSparseVoxelMatrix (
MultiScalarField3D<int>& fullVoxelMatrix,
plint blockSize_, plint envelopeWidth_ );
void computeSparseVoxelMatrix (
MultiScalarField3D<int>& fullVoxelMatrix,
plint blockSize, plint envelopeWidth );
void extendEnvelopeWidth (
MultiScalarField3D<int>& fullVoxelMatrix, plint envelopeWidth );
void createTriangleHash();
template<class ParticleFieldT>
void reCreateTriangleHash(MultiParticleField3D<ParticleFieldT>& particles);
void computeOuterMask();
private:
int flowType;
plint borderWidth;
TriangleBoundary3D<T> const& boundary;
MultiScalarField3D<int>* voxelMatrix;
MultiContainerBlock3D* triangleHash;
};
template<typename T>
void addLayer(MultiScalarField3D<T>& matrix, Box3D const& domain,
T previousLayer);
template<typename T>
class AddLayerFunctional3D : public BoxProcessingFunctional3D_S<T> {
public:
AddLayerFunctional3D(T previousLayer_);
virtual void process(Box3D domain, ScalarField3D<T>& voxels);
virtual AddLayerFunctional3D<T>* clone() const;
virtual void getTypeOfModification(std::vector<modif::ModifT>& modified) const;
virtual BlockDomain::DomainT appliesTo() const;
private:
T previousLayer;
};
} // namespace plb
#endif // TRIANGLE_BOUNDARY_3D_H
|