/usr/include/palabos/offLattice/marchingCube.hh is in libplb-dev 1.5~r1+repack1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 | /* This file is part of the Palabos library.
*
* Copyright (C) 2011-2015 FlowKit Sarl
* Route d'Oron 2
* 1010 Lausanne, Switzerland
* E-mail contact: contact@flowkit.com
*
* The most recent release of Palabos can be downloaded at
* <http://www.palabos.org/>
*
* The library Palabos is free software: you can redistribute it and/or
* modify it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of the
* License, or (at your option) any later version.
*
* The library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef MARCHING_CUBE_HH
#define MARCHING_CUBE_HH
#include "core/globalDefs.h"
#include "offLattice/marchingCube.h"
#include "latticeBoltzmann/geometricOperationTemplates.h"
#include <limits>
namespace plb {
/* ****** class IsoSurfaceDefinition3D ***************** */
template<typename T>
bool IsoSurfaceDefinition3D<T>::edgeIsValid(plint iX, plint iY, plint iZ, int edge) const
{
switch(edge) {
case 0: {
Array<plint,3> p0(iX ,iY+1,iZ );
Array<plint,3> p1(iX+1,iY+1,iZ );
return this->isValid(p0) && this->isValid(p1); // x-edge of y-neighbor.
}
case 1: {
Array<plint,3> p1(iX+1,iY+1,iZ );
Array<plint,3> p2(iX+1,iY ,iZ );
return this->isValid(p1) && this->isValid(p2); // y-edge of x-neighbor.
}
case 2: {
Array<plint,3> p2(iX+1,iY ,iZ );
Array<plint,3> p3(iX ,iY ,iZ );
return this->isValid(p2) && this->isValid(p3); // x-edge of current cell.
}
case 3: {
Array<plint,3> p3(iX ,iY ,iZ );
Array<plint,3> p0(iX ,iY+1,iZ );
return this->isValid(p3) && this->isValid(p0); // y-edge of current cell.
}
case 4: {
Array<plint,3> p4(iX ,iY+1,iZ+1);
Array<plint,3> p5(iX+1,iY+1,iZ+1);
return this->isValid(p4) && this->isValid(p5); // x-edge of y-z-neighbor.
}
case 5: {
Array<plint,3> p5(iX+1,iY+1,iZ+1);
Array<plint,3> p6(iX+1,iY ,iZ+1);
return this->isValid(p5) && this->isValid(p6); // y-edge of x-z-neighbor.
}
case 6: {
Array<plint,3> p6(iX+1,iY ,iZ+1);
Array<plint,3> p7(iX ,iY ,iZ+1);
return this->isValid(p6) && this->isValid(p7); // x-edge of z-neighbor.
}
case 7: {
Array<plint,3> p7(iX ,iY ,iZ+1);
Array<plint,3> p4(iX ,iY+1,iZ+1);
return this->isValid(p7) && this->isValid(p4); // y-edge of z-neighbor.
}
case 8: {
Array<plint,3> p0(iX ,iY+1,iZ );
Array<plint,3> p4(iX ,iY+1,iZ+1);
return this->isValid(p0) && this->isValid(p4); // z-edge of y-neighbor.
}
case 9: {
Array<plint,3> p1(iX+1,iY+1,iZ );
Array<plint,3> p5(iX+1,iY+1,iZ+1);
return this->isValid(p1) && this->isValid(p5); // z-edge of x-y-neighbor.
}
case 10: {
Array<plint,3> p2(iX+1,iY ,iZ );
Array<plint,3> p6(iX+1,iY ,iZ+1);
return this->isValid(p2) && this->isValid(p6); // z-edge of x-neighbor.
}
case 11: {
Array<plint,3> p3(iX ,iY ,iZ );
Array<plint,3> p7(iX ,iY ,iZ+1);
return this->isValid(p3) && this->isValid(p7); // z-edge of current cell.
}
default:
PLB_ASSERT(false);
return false;
}
}
/* ****** class ScalarFieldIsoSurface3D ***************** */
template<typename T>
ScalarFieldIsoSurface3D<T>::ScalarFieldIsoSurface3D(std::vector<T> const& isoValues_)
: isoValues(isoValues_),
scalar(0),
location(0,0,0)
{ }
template<typename T>
void ScalarFieldIsoSurface3D<T>::setArguments (
std::vector<AtomicBlock3D*> const& arguments )
{
PLB_ASSERT( arguments.size() >= 1 );
scalar = dynamic_cast<ScalarField3D<T>*>(arguments[0]);
PLB_ASSERT(scalar);
location = scalar->getLocation();
}
template<typename T>
bool ScalarFieldIsoSurface3D<T>::isInside (
plint surfaceId, Array<plint,3> const& position ) const
{
PLB_ASSERT(scalar);
PLB_ASSERT(surfaceId < (plint)isoValues.size());
return scalar->get(position[0]-location.x, position[1]-location.y, position[2]-location.z) < isoValues[surfaceId];
}
template<typename T>
Array<T,3> ScalarFieldIsoSurface3D<T>::getSurfacePosition (
plint surfaceId, Array<plint,3> const& p1, Array<plint,3> const& p2 ) const
{
static const T epsilon = 1.e-5;
PLB_ASSERT(scalar);
PLB_ASSERT(surfaceId < (plint)isoValues.size());
T valp1 = scalar->get(p1[0]-location.x, p1[1]-location.y, p1[2]-location.z);
T valp2 = scalar->get(p2[0]-location.x, p2[1]-location.y, p2[2]-location.z);
T isolevel = isoValues[surfaceId];
if (std::fabs(isolevel-valp1) < epsilon) return(p1);
if (std::fabs(isolevel-valp2) < epsilon) return(p2);
if (std::fabs(valp1-valp2) < epsilon) return(p1);
T mu = (isolevel - valp1) / (valp2 - valp1);
return Array<T,3> (
(T)p1[0] + mu * (p2[0] - p1[0]),
(T)p1[1] + mu * (p2[1] - p1[1]),
(T)p1[2] + mu * (p2[2] - p1[2]) );
}
template<typename T>
ScalarFieldIsoSurface3D<T>* ScalarFieldIsoSurface3D<T>::clone() const {
return new ScalarFieldIsoSurface3D<T>(*this);
}
template<typename T>
std::vector<plint> ScalarFieldIsoSurface3D<T>::getSurfaceIds() const {
std::vector<plint> surfaceIds;
for (plint i=0; i<(plint)isoValues.size(); ++i) {
surfaceIds.push_back(i);
}
return surfaceIds;
}
/* ****** class BoundaryShapeIsoSurface3D ***************** */
template<typename T, class SurfaceData>
BoundaryShapeIsoSurface3D<T,SurfaceData>::BoundaryShapeIsoSurface3D(BoundaryShape3D<T,SurfaceData>* shape_)
: shape(shape_)
{ }
template<typename T, class SurfaceData>
BoundaryShapeIsoSurface3D<T,SurfaceData>::~BoundaryShapeIsoSurface3D() {
delete shape;
}
template<typename T, class SurfaceData>
BoundaryShapeIsoSurface3D<T,SurfaceData>::BoundaryShapeIsoSurface3D(BoundaryShapeIsoSurface3D<T,SurfaceData> const& rhs)
: shape(rhs.shape->clone())
{ }
template<typename T, class SurfaceData>
BoundaryShapeIsoSurface3D<T,SurfaceData>& BoundaryShapeIsoSurface3D<T,SurfaceData>::operator= (
BoundaryShapeIsoSurface3D<T,SurfaceData> const& rhs )
{
BoundaryShapeIsoSurface3D<T,SurfaceData>(rhs).swap(*this);
return *this;
}
template<typename T, class SurfaceData>
void BoundaryShapeIsoSurface3D<T,SurfaceData>::swap(BoundaryShapeIsoSurface3D<T,SurfaceData>& rhs) {
std::swap(shape, rhs.shape);
}
template<typename T, class SurfaceData>
void BoundaryShapeIsoSurface3D<T,SurfaceData>::setArguments(std::vector<AtomicBlock3D*> const& arguments)
{
BoundaryShape3D<T,SurfaceData>* newShape = shape->clone(arguments);
std::swap(shape,newShape);
delete newShape;
}
template<typename T, class SurfaceData>
BoundaryShapeIsoSurface3D<T,SurfaceData>* BoundaryShapeIsoSurface3D<T,SurfaceData>::clone() const {
return new BoundaryShapeIsoSurface3D<T,SurfaceData>(*this);
}
template<typename T, class SurfaceData>
std::vector<plint> BoundaryShapeIsoSurface3D<T,SurfaceData>::getSurfaceIds() const {
std::vector<plint> surfaceIds;
surfaceIds.push_back(0); // Only one surface can be produced, ID does not matter.
return surfaceIds;
}
template<typename T, class SurfaceData>
bool BoundaryShapeIsoSurface3D<T,SurfaceData>::isInside (
plint surfaceId, Array<plint,3> const& position ) const
{
return shape->isInside(Dot3D(position[0],position[1],position[2]));
}
template<typename T, class SurfaceData>
Array<T,3> BoundaryShapeIsoSurface3D<T,SurfaceData>::getSurfacePosition (
plint surfaceId, Array<plint,3> const& p1, Array<plint,3> const& p2 ) const
{
Array<T,3> realP1(p1), realP2(p2);
Array<T,3> surfacePosition, wallNormal;
T distance;
SurfaceData surfaceData;
OffBoundary::Type bdType;
plint id=-1;
bool ok =
shape->pointOnSurface( realP1, realP2-realP1, surfacePosition,
distance, wallNormal, surfaceData, bdType, id );
//PLB_ASSERT( ok );
if (!ok) {
ok =
shape->pointOnSurface( realP1-(T)0.5*(realP2-realP1), (T)2.0*(realP2-realP1), surfacePosition,
distance, wallNormal, surfaceData, bdType, id );
if (!ok) {
surfacePosition = (T)0.5*(realP2+realP1);
}
}
return surfacePosition;
}
/* ****** class MarchingCubeSurfaces3D ***************** */
template<typename T>
MarchingCubeSurfaces3D<T>::MarchingCubeSurfaces3D (
std::vector<plint> surfaceIds_, IsoSurfaceDefinition3D<T>* isoSurface_,
bool edgeOrientedData_ )
: surfaceIds(surfaceIds_),
isoSurface(isoSurface_),
edgeOrientedData(edgeOrientedData_),
edgeOrientedEnvelope(1)
{ }
template<typename T>
MarchingCubeSurfaces3D<T>::~MarchingCubeSurfaces3D() {
delete isoSurface;
}
template<typename T>
void MarchingCubeSurfaces3D<T>::getTypeOfModification(std::vector<modif::ModifT>& modified) const {
modified[0] = modif::staticVariables;
for (pluint i=1; i<modified.size(); ++i) {
modified[i] = modif::nothing;
}
}
template<typename T>
MarchingCubeSurfaces3D<T>::MarchingCubeSurfaces3D(MarchingCubeSurfaces3D<T> const& rhs)
: surfaceIds(rhs.surfaceIds),
isoSurface(rhs.isoSurface->clone()),
edgeOrientedData(rhs.edgeOrientedData),
edgeOrientedEnvelope(rhs.edgeOrientedEnvelope)
{ }
template<typename T>
MarchingCubeSurfaces3D<T>& MarchingCubeSurfaces3D<T>::operator=(MarchingCubeSurfaces3D<T> const& rhs)
{
MarchingCubeSurfaces3D<T>(rhs).swap(*this);
return *this;
}
template<typename T>
MarchingCubeSurfaces3D<T>* MarchingCubeSurfaces3D<T>::clone() const
{
return new MarchingCubeSurfaces3D<T>(*this);
}
template<typename T>
void MarchingCubeSurfaces3D<T>::swap(MarchingCubeSurfaces3D<T>& rhs)
{
surfaceIds.swap(rhs.surfaceIds);
std::swap(isoSurface, rhs.isoSurface);
std::swap(edgeOrientedData, rhs.edgeOrientedData);
std::swap(edgeOrientedEnvelope, rhs.edgeOrientedEnvelope);
}
template<typename T>
void MarchingCubeSurfaces3D<T>::processGenericBlocks (
Box3D domain, std::vector<AtomicBlock3D*> fields )
{
PLB_PRECONDITION( (plint)fields.size() >= 1 + isoSurface->getNumArgs() );
AtomicContainerBlock3D* triangleContainer =
dynamic_cast<AtomicContainerBlock3D*>(fields[0]);
PLB_ASSERT( triangleContainer );
if (isoSurface->getNumArgs()>0) {
std::vector<AtomicBlock3D*> isoSurfaceParameters(isoSurface->getNumArgs());
for (plint i=0; i<isoSurface->getNumArgs(); ++i) {
isoSurfaceParameters[i] = fields[i+1];
}
isoSurface->setArguments(isoSurfaceParameters);
}
if (edgeOrientedData) {
edgeOriented(domain, triangleContainer);
}
else {
defaultImplementation(domain, triangleContainer);
}
}
template<typename T>
void MarchingCubeSurfaces3D<T>::defaultImplementation (
Box3D domain, AtomicContainerBlock3D* triangleContainer )
{
std::vector<Triangle> triangles;
Dot3D location = triangleContainer->getLocation();
for (plint iX=domain.x0; iX<=domain.x1; ++iX) {
for (plint iY=domain.y0; iY<=domain.y1; ++iY) {
for (plint iZ=domain.z0; iZ<=domain.z1; ++iZ) {
for (pluint i=0; i<surfaceIds.size(); ++i) {
polygonize(iX+location.x,iY+location.y,iZ+location.z, surfaceIds[i], triangles);
}
}
}
}
TriangleSetData* data = new TriangleSetData;
data->triangles = triangles;
triangleContainer -> setData(data);
}
template<typename T>
void MarchingCubeSurfaces3D<T>::edgeOriented (
Box3D domain, AtomicContainerBlock3D* triangleContainer )
{
EdgeOrientedTriangleSetData* data = new EdgeOrientedTriangleSetData (
triangleContainer -> getNx(), triangleContainer -> getNy(),
triangleContainer -> getNz() );
Dot3D location = triangleContainer->getLocation();
// Include at least one envelope layer, so the outer edges get the full information
// from all surrounding triangles.
plint env=edgeOrientedEnvelope;
for (plint iX=domain.x0-env; iX<=domain.x1+env; ++iX) {
for (plint iY=domain.y0-env; iY<=domain.y1+env; ++iY) {
for (plint iZ=domain.z0-env; iZ<=domain.z1+env; ++iZ) {
for (pluint iSurf=0; iSurf<surfaceIds.size(); ++iSurf) {
std::vector<Triangle> triangles;
std::vector<Array<plint,4> > edgeAttributions;
// Get all triangles computed by the marching-cube algorithm for
// the current cell.
polygonize(iX+location.x,iY+location.y,iZ+location.z, surfaceIds[iSurf],
triangles, edgeAttributions);
// Additionally to the triangle coordinates, the algorithm returns
// the coordinates of the edges on which the triangle vertices are placed.
// There's an edge attribution for every triangle vertex, as it is checked by the
// following assertion:
PLB_ASSERT( edgeAttributions.size() == 3*triangles.size() );
plint i=0; // i runs over the edge-attribution index.
for (pluint iTriangle=0; iTriangle<triangles.size(); ++iTriangle) {
Triangle triangle = triangles[iTriangle];
// Turn the cell coordinates of the edge attribution into coordinates
// that are local to the current atomic-block.
Array<Array<plint,4>,3> localEdgeAttribution;
// Do the conversion for each of the three vertices of the current triangle.
for (int j=0; j<3; ++j, ++i) {
localEdgeAttribution[j] = Array<plint,4> (
edgeAttributions[i][0] - location.x,
edgeAttributions[i][1] - location.y,
edgeAttributions[i][2] - location.z,
edgeAttributions[i][3] );
}
// Add the triangle to the data structure. Each triangle is added three
// times, once on each edge on which it has a vertex.
for (int j=0; j<3; ++j) {
typename EdgeOrientedTriangleSetData::OnEdgeTriangle onEdgeTriangle;
// The first vertex is always the one which is on the current edge.
// The two subsequent vertices are defined so as to preserve the
// triangle orientation.
onEdgeTriangle.vertex1 = localEdgeAttribution[(j+1)%3];
onEdgeTriangle.vertex2 = localEdgeAttribution[(j+2)%3];
plint iX=localEdgeAttribution[j][0];
plint iY=localEdgeAttribution[j][1];
plint iZ=localEdgeAttribution[j][2];
plint edgeId = localEdgeAttribution[j][3];
data->addTriangle(iX,iY,iZ, edgeId, onEdgeTriangle);
// In the end, the edge vertex position will be set multiple times (once for each
// triangle that has a vertex on the edge). This doesn't matter, because the
// marching-cube algorithm in every case produces the same vertex position.
data->setVertex(iX,iY,iZ, edgeId, triangle[j]);
}
}
}
}
}
}
triangleContainer -> setData(data);
}
template<typename T>
void MarchingCubeSurfaces3D<T>::removeFromVertex (
Array<T,3> const& p0, Array<T,3> const& p1, Array<T,3>& intersection )
{
static const T triangleEpsilon= 1.e-3;
static const T triangleEpsilonSqr = util::sqr(triangleEpsilon);
if (normSqr(p0-intersection) < triangleEpsilonSqr) {
intersection = p0 + triangleEpsilon*(p1-p0);
}
else if (normSqr(p1-intersection) < triangleEpsilonSqr) {
intersection = p1 - triangleEpsilon*(p1-p0);
}
}
template<typename T>
void MarchingCubeSurfaces3D<T>::marchingCubeImpl (
plint iX, plint iY, plint iZ, plint surfaceId,
std::vector<Triangle>& triangles,
int& cubeindex, std::vector<Array<T,3> >& vertlist )
{
typedef MarchingCubeConstants mcc;
Array<plint,3> p0(iX ,iY+1,iZ );
Array<plint,3> p1(iX+1,iY+1,iZ );
Array<plint,3> p2(iX+1,iY ,iZ );
Array<plint,3> p3(iX ,iY ,iZ );
Array<plint,3> p4(iX ,iY+1,iZ+1);
Array<plint,3> p5(iX+1,iY+1,iZ+1);
Array<plint,3> p6(iX+1,iY ,iZ+1);
Array<plint,3> p7(iX ,iY ,iZ+1);
cubeindex = 0;
if (isoSurface->isInside(surfaceId,p0)) cubeindex |= 1; // Point 0
if (isoSurface->isInside(surfaceId,p1)) cubeindex |= 2; // Point 1
if (isoSurface->isInside(surfaceId,p2)) cubeindex |= 4; // Point 2
if (isoSurface->isInside(surfaceId,p3)) cubeindex |= 8; // Point 3
if (isoSurface->isInside(surfaceId,p4)) cubeindex |= 16; // Point 4
if (isoSurface->isInside(surfaceId,p5)) cubeindex |= 32; // Point 5
if (isoSurface->isInside(surfaceId,p6)) cubeindex |= 64; // Point 6
if (isoSurface->isInside(surfaceId,p7)) cubeindex |= 128; // Point 7
vertlist.resize(12);
/* Cube is entirely in/out of the surface */
if (mcc::edgeTable[cubeindex] == 0) return;
/* Find the vertices where the surface intersects the cube */
if (mcc::edgeTable[cubeindex] & 1) {
vertlist[0] = isoSurface->getSurfacePosition(surfaceId, p0, p1); // x-edge of y-neighbor.
removeFromVertex(p0, p1, vertlist[0]);
}
if (mcc::edgeTable[cubeindex] & 2) {
vertlist[1] = isoSurface->getSurfacePosition(surfaceId, p1, p2); // y-edge of x-neighbor.
removeFromVertex(p1, p2, vertlist[1]);
}
if (mcc::edgeTable[cubeindex] & 4) {
vertlist[2] = isoSurface->getSurfacePosition(surfaceId, p2, p3); // x-edge of current cell.
removeFromVertex(p2, p3, vertlist[2]);
}
if (mcc::edgeTable[cubeindex] & 8) {
vertlist[3] = isoSurface->getSurfacePosition(surfaceId, p3, p0); // y-edge of current cell.
removeFromVertex(p3, p0, vertlist[3]);
}
if (mcc::edgeTable[cubeindex] & 16) {
vertlist[4] = isoSurface->getSurfacePosition(surfaceId, p4, p5); // x-edge of y-z-neighbor.
removeFromVertex(p4, p5, vertlist[4]);
}
if (mcc::edgeTable[cubeindex] & 32) {
vertlist[5] = isoSurface->getSurfacePosition(surfaceId, p5, p6); // y-edge of x-z-neighbor.
removeFromVertex(p5, p6, vertlist[5]);
}
if (mcc::edgeTable[cubeindex] & 64) {
vertlist[6] = isoSurface->getSurfacePosition(surfaceId, p6, p7); // x-edge of z-neighbor.
removeFromVertex(p6, p7, vertlist[6]);
}
if (mcc::edgeTable[cubeindex] & 128) {
vertlist[7] = isoSurface->getSurfacePosition(surfaceId, p7, p4); // y-edge of z-neighbor.
removeFromVertex(p7, p4, vertlist[7]);
}
if (mcc::edgeTable[cubeindex] & 256) {
vertlist[8] = isoSurface->getSurfacePosition(surfaceId, p0, p4); // z-edge of y-neighbor.
removeFromVertex(p0, p4, vertlist[8]);
}
if (mcc::edgeTable[cubeindex] & 512) {
vertlist[9] = isoSurface->getSurfacePosition(surfaceId, p1, p5); // z-edge of x-y-neighbor.
removeFromVertex(p1, p5, vertlist[9]);
}
if (mcc::edgeTable[cubeindex] & 1024) {
vertlist[10] = isoSurface->getSurfacePosition(surfaceId, p2, p6); // z-edge of x-neighbor.
removeFromVertex(p2, p6, vertlist[10]);
}
if (mcc::edgeTable[cubeindex] & 2048) {
vertlist[11] = isoSurface->getSurfacePosition(surfaceId, p3, p7); // z-edge of current cell.
removeFromVertex(p3, p7, vertlist[11]);
}
}
template<typename T>
void MarchingCubeSurfaces3D<T>::polygonize (
plint iX, plint iY, plint iZ, plint surfaceId,
std::vector<Triangle>& triangles )
{
static const T epsilon = std::numeric_limits<T>::epsilon()*1.e4;
typedef MarchingCubeConstants mcc;
int cubeindex;
std::vector<Array<T,3> > vertlist(12);
marchingCubeImpl(iX,iY,iZ, surfaceId, triangles, cubeindex, vertlist);
/* Create the triangle */
for (plint i=0;mcc::triTable[cubeindex][i]!=-1;i+=3) {
int edge1 = mcc::triTable[cubeindex][i ];
int edge2 = mcc::triTable[cubeindex][i+1];
int edge3 = mcc::triTable[cubeindex][i+2];
if (isoSurface->edgeIsValid(iX,iY,iZ, edge1) &&
isoSurface->edgeIsValid(iX,iY,iZ, edge2) &&
isoSurface->edgeIsValid(iX,iY,iZ, edge3) )
{
Triangle triangle;
triangle[0] = vertlist[edge1];
triangle[1] = vertlist[edge2];
triangle[2] = vertlist[edge3];
if (computeTriangleArea(triangle[0],triangle[1],triangle[2])>epsilon) {
triangles.push_back(triangle);
}
}
}
}
template<typename T>
void MarchingCubeSurfaces3D<T>::polygonize (
plint iX, plint iY, plint iZ, plint surfaceId,
std::vector<Triangle>& triangles,
std::vector<Array<plint,4> >& edgeAttributions )
{
typedef MarchingCubeConstants mcc;
int cubeindex;
std::vector<Array<T,3> > vertlist(12);
marchingCubeImpl(iX,iY,iZ, surfaceId, triangles, cubeindex, vertlist);
/* Create the triangle */
for (plint i=0;mcc::triTable[cubeindex][i]!=-1;i+=3) {
int edge1 = mcc::triTable[cubeindex][i ];
int edge2 = mcc::triTable[cubeindex][i+1];
int edge3 = mcc::triTable[cubeindex][i+2];
if (isoSurface->edgeIsValid(iX,iY,iZ, edge1) &&
isoSurface->edgeIsValid(iX,iY,iZ, edge2) &&
isoSurface->edgeIsValid(iX,iY,iZ, edge3) )
{
Triangle triangle;
triangle[0] = vertlist[edge1];
triangle[1] = vertlist[edge2];
triangle[2] = vertlist[edge3];
triangles.push_back(triangle);
edgeAttributions.push_back (
Array<plint,4>(iX+mcc::edgeNeighb[edge1][0],
iY+mcc::edgeNeighb[edge1][1],
iZ+mcc::edgeNeighb[edge1][2],
mcc::edgeOrient[edge1]) );
edgeAttributions.push_back (
Array<plint,4>(iX+mcc::edgeNeighb[edge2][0],
iY+mcc::edgeNeighb[edge2][1],
iZ+mcc::edgeNeighb[edge2][2],
mcc::edgeOrient[edge2] ) );
edgeAttributions.push_back (
Array<plint,4>(iX+mcc::edgeNeighb[edge3][0],
iY+mcc::edgeNeighb[edge3][1],
iZ+mcc::edgeNeighb[edge3][2],
mcc::edgeOrient[edge3] ) );
}
}
}
/* ****** Free Functions ***************** */
/// Get an iso-surface by means of the marching cube algorithms. The iso-surface
/// is defined in very generic terms by the isoSurfaceDefinition, and the
/// surfDefinitionArgs are whatever arguments the isoSurfaceDefinition needs.
/// The isoSurfaceDefinition can compute a finite amount of iso-surfaces, the
/// IDs of which are provided by the last argument. If the last argument is omitted,
/// all available iso-surfaces are computed.
///
/// The iso-surface is returned as a set of triangles, in the first argument.
template<typename T>
void isoSurfaceMarchingCube (
std::vector<typename TriangleSet<T>::Triangle>& triangles,
std::vector<MultiBlock3D*> surfDefinitionArgs,
IsoSurfaceDefinition3D<T>* isoSurfaceDefinition, Box3D const& domain,
std::vector<plint> surfaceIds )
{
typedef typename TriangleSet<T>::Triangle Triangle;
PLB_ASSERT( surfDefinitionArgs.size()>0 );
if (surfaceIds.empty()) {
surfaceIds = isoSurfaceDefinition->getSurfaceIds();
}
MultiContainerBlock3D triangleContainer(*surfDefinitionArgs[0]);
std::vector<MultiBlock3D*> args;
args.push_back(&triangleContainer);
for (pluint i=0; i<surfDefinitionArgs.size(); ++i) {
args.push_back(surfDefinitionArgs[i]);
}
applyProcessingFunctional (
new MarchingCubeSurfaces3D<T>(surfaceIds, isoSurfaceDefinition), domain, args );
MultiBlockManagement3D const& management = triangleContainer.getMultiBlockManagement();
ThreadAttribution const& threadAttribution = management.getThreadAttribution();
SparseBlockStructure3D const& sparseBlock = management.getSparseBlockStructure();
std::map<plint,Box3D> const& domains = sparseBlock.getBulks();
std::vector<plint> numTriangles(domains.size());
std::vector<plint> myPositions;
std::vector<std::vector<Triangle> > myTriangles;
std::map<plint,Box3D>::const_iterator it = domains.begin();
plint pos = 0;
for (; it != domains.end(); ++it) {
plint id = it->first;
if (threadAttribution.isLocal(id)) {
myPositions.push_back(pos);
AtomicContainerBlock3D const& atomicContainer = triangleContainer.getComponent(id);
typename MarchingCubeSurfaces3D<T>::TriangleSetData const* data =
dynamic_cast<typename MarchingCubeSurfaces3D<T>::TriangleSetData const*> (atomicContainer.getData());
if (data) {
PLB_ASSERT((plint)numTriangles.size()>pos);
numTriangles[pos] = data->triangles.size();
myTriangles.push_back(data->triangles);
}
else {
PLB_ASSERT((plint)numTriangles.size()>pos);
numTriangles[pos] = 0;
myTriangles.push_back(std::vector<Triangle>());
}
}
else {
PLB_ASSERT((plint)numTriangles.size()>pos);
numTriangles[pos] = 0;
}
++pos;
}
#ifdef PLB_MPI_PARALLEL
if (numTriangles.size()>0) {
std::vector<plint> tmp(numTriangles.size());
global::mpi().reduceVect(numTriangles, tmp, MPI_SUM);
PLB_ASSERT(tmp.size()>0);
global::mpi().bCast(&tmp[0], tmp.size());
tmp.swap(numTriangles);
}
#endif
std::vector<plint> cumNumTriangles(numTriangles.size()+1);
PLB_ASSERT(cumNumTriangles.size()>0);
cumNumTriangles[0] = 0;
std::partial_sum(numTriangles.begin(), numTriangles.end(), cumNumTriangles.begin()+1);
plint totNumTriangles = cumNumTriangles.back();
triangles.clear();
if (global::mpi().isMainProcessor()) {
triangles.resize(totNumTriangles);
std::map<plint,Box3D>::const_iterator it = domains.begin();
plint iDomain=0;
plint iMyPositions=0;
for (; it != domains.end(); ++it, ++iDomain) {
PLB_ASSERT((plint)cumNumTriangles.size()>iDomain);
plint startPos = cumNumTriangles[iDomain];
PLB_ASSERT((plint)cumNumTriangles.size()>iDomain+1);
plint endPos = cumNumTriangles[iDomain+1];
plint id = it->first;
int mpiThread = threadAttribution.getMpiProcess(id);
if (mpiThread==0) {
PLB_ASSERT((plint)myTriangles.size()>iMyPositions);
PLB_ASSERT((plint)triangles.size()>= (plint)myTriangles[iMyPositions].size()+startPos);
std::copy(myTriangles[iMyPositions].begin(), myTriangles[iMyPositions].end(),
triangles.begin()+startPos);
++iMyPositions;
}
else {
PLB_ASSERT(endPos>=startPos);
std::vector<T> receiveVect(9*(endPos-startPos));
#ifdef PLB_MPI_PARALLEL
if (receiveVect.empty()) receiveVect.resize(1);
global::mpi().receive(&receiveVect[0], receiveVect.size(), mpiThread);
#endif
for (plint i=startPos; i<endPos; ++i) {
plint k=0;
for (pluint iVertex=0; iVertex<3; ++iVertex) {
for (pluint iCoord=0; iCoord<3; ++iCoord) {
PLB_ASSERT((plint)triangles.size()>i);
PLB_ASSERT((plint)receiveVect.size()>9*(i-startPos)+k);
triangles[i][iVertex][iCoord] = receiveVect[9*(i-startPos)+k];
++k;
}
}
}
}
}
}
else { // isMainProcessor
for (pluint iPos=0; iPos<myPositions.size(); ++iPos) {
plint myPos = myPositions[iPos];
PLB_ASSERT((plint)cumNumTriangles.size()>myPos);
plint startPos = cumNumTriangles[myPos];
PLB_ASSERT((plint)cumNumTriangles.size()>myPos+1);
plint endPos = cumNumTriangles[myPos+1];
std::vector<T> sendVect(9*(endPos-startPos));
for (plint i=0; i<endPos-startPos; ++i) {
plint k=0;
for (pluint iVertex=0; iVertex<3; ++iVertex) {
for (pluint iCoord=0; iCoord<3; ++iCoord) {
PLB_ASSERT((plint)sendVect.size()>9*i+k);
PLB_ASSERT(myTriangles.size()>iPos);
PLB_ASSERT((plint)myTriangles[iPos].size()>i);
sendVect[9*i+k] = myTriangles[iPos][i][iVertex][iCoord];
++k;
}
}
}
#ifdef PLB_MPI_PARALLEL
if (sendVect.empty()) sendVect.resize(1);
global::mpi().send(&sendVect[0], sendVect.size(), 0);
#endif
}
}
}
template<typename T>
void isoSurfaceMarchingCube (
std::vector<typename TriangleSet<T>::Triangle>& triangles,
VoxelizedDomain3D<T>& voxelizedDomain, Box3D const& domain )
{
BoundaryProfiles3D<T,Array<T,3> > profiles;
TriangleFlowShape3D<T,Array<T,3> >* flowShape =
new TriangleFlowShape3D<T,Array<T,3> >(voxelizedDomain.getBoundary(), profiles);
std::vector<MultiBlock3D*> triangleShapeArg;
triangleShapeArg.push_back(&voxelizedDomain.getVoxelMatrix());
triangleShapeArg.push_back(&voxelizedDomain.getTriangleHash());
triangleShapeArg.push_back(&voxelizedDomain.getVoxelMatrix()); // dummy argument.
isoSurfaceMarchingCube(triangles, triangleShapeArg, new BoundaryShapeIsoSurface3D<T,Array<T,3> >(flowShape), domain);
}
template<typename T>
void isoSurfaceMarchingCube (
std::vector<typename TriangleSet<T>::Triangle>& triangles,
MultiScalarField3D<T>& scalarField, std::vector<T> const& isoLevels, Box3D const& domain )
{
std::vector<MultiBlock3D*> scalarFieldArg;
scalarFieldArg.push_back(&scalarField);
isoSurfaceMarchingCube(triangles, scalarFieldArg, new ScalarFieldIsoSurface3D<T>(isoLevels), domain);
}
template<typename T, class Function>
void isoSurfaceMarchingCube (
std::vector<typename TriangleSet<T>::Triangle>& triangles, MultiBlock3D& block,
Function const& function, Box3D const& domain )
{
std::vector<MultiBlock3D*> surfDefinitionArgs;
surfDefinitionArgs.push_back(&block);
AnalyticalIsoSurface3D<T,Function>* isoSurface = new AnalyticalIsoSurface3D<T,Function>(function);
std::vector<plint> surfaceIds;
surfaceIds.push_back(0);
isoSurfaceMarchingCube(triangles, surfDefinitionArgs, isoSurface, domain, surfaceIds);
}
template<typename T, template<typename U> class Descriptor>
TriangleSet<T> vofToTriangles(MultiScalarField3D<T>& scalarField, T threshold, Box3D domain)
{
std::vector<T> isoLevels;
isoLevels.push_back(threshold);
typedef typename TriangleSet<T>::Triangle Triangle;
std::vector<Triangle> triangles;
isoSurfaceMarchingCube (
triangles,
*lbmSmoothen<T,Descriptor>(*lbmSmoothen<T,Descriptor>(scalarField, domain),domain),
isoLevels, scalarField.getBoundingBox().enlarge(-2) );
TriangleSet<T> triangleSet(triangles);
return triangleSet;
}
template<typename T, template<typename U> class Descriptor>
TriangleSet<T> vofToTriangles(MultiScalarField3D<T>& scalarField, T threshold)
{
Box3D domain = scalarField.getBoundingBox();
return vofToTriangles(scalarField, threshold, domain);
}
template<typename T, class Function>
bool AnalyticalIsoSurface3D<T,Function>::isInside (
plint surfaceId, Array<plint,3> const& position ) const
{
return function.intIsInside(position);
}
template<typename T, class Function>
Array<T,3> AnalyticalIsoSurface3D<T,Function>::getSurfacePosition (
plint surfaceId, Array<plint,3> const& p1, Array<plint,3> const& p2 ) const
{
static const T epsilon = 1.e-4;
plint maxIter = 40;
plint countMax = 10;
plint count = 0;
T pos = T();
bool ok = bisect(WrappedIsInside(p1, p2, function), (T)0-epsilon, (T)1+epsilon, epsilon, maxIter, pos);
while (!ok && count < countMax) {
count++;
maxIter *= 2;
pos = T();
ok = bisect(WrappedIsInside(p1, p2, function), (T)0-epsilon, (T)1+epsilon, epsilon, maxIter, pos);
}
PLB_ASSERT( ok );
return Array<T,3> (
(T)p1[0] + pos * (p2[0] - p1[0]),
(T)p1[1] + pos * (p2[1] - p1[1]),
(T)p1[2] + pos * (p2[2] - p1[2]) );
}
template<typename T, class Function>
AnalyticalIsoSurface3D<T,Function>* AnalyticalIsoSurface3D<T,Function>::clone() const {
return new AnalyticalIsoSurface3D<T,Function>(*this);
}
template<typename T, class Function>
std::vector<plint> AnalyticalIsoSurface3D<T,Function>::getSurfaceIds() const {
std::vector<plint> surfaceIds;
surfaceIds.push_back(0);
return surfaceIds;
}
} // namespace plb
#endif // MARCHING_CUBE_HH
|