/usr/include/palabos/offLattice/marchingCube.h is in libplb-dev 1.5~r1+repack1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 | /* This file is part of the Palabos library.
*
* Copyright (C) 2011-2015 FlowKit Sarl
* Route d'Oron 2
* 1010 Lausanne, Switzerland
* E-mail contact: contact@flowkit.com
*
* The most recent release of Palabos can be downloaded at
* <http://www.palabos.org/>
*
* The library Palabos is free software: you can redistribute it and/or
* modify it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of the
* License, or (at your option) any later version.
*
* The library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef MARCHING_CUBE_H
#define MARCHING_CUBE_H
#include "core/globalDefs.h"
#include "offLattice/boundaryShapes3D.h"
#include "offLattice/triangleSet.h"
#include "offLattice/triangularSurfaceMesh.h"
#include "offLattice/offLatticeBoundaryProfiles3D.h"
#include "offLattice/triangleBoundary3D.h"
#include "latticeBoltzmann/geometricOperationTemplates.h"
#include <vector>
namespace plb {
template<typename T> class IsoSurfaceDefinition3D;
/// Get an iso-surface by means of the marching cube algorithms.
/** The iso-surface is defined in very generic terms by the isoSurfaceDefinition,
* and the surfDefinitionArgs are whatever arguments the isoSurfaceDefinition
* needs. The isoSurfaceDefinition can compute a finite amount of iso-surfaces,
* the IDs of which are provided by the last argument. If the last argument is
* omitted, all available iso-surfaces are computed.
* The iso-surface is returned as a set of triangles, in the first argument.
**/
template<typename T>
void isoSurfaceMarchingCube (
std::vector<typename TriangleSet<T>::Triangle>& triangles,
std::vector<MultiBlock3D*> surfDefinitionArgs,
IsoSurfaceDefinition3D<T>* isoSurfaceDefinition,
Box3D const& domain, std::vector<plint> surfaceIds = std::vector<plint>() );
/// This wrapper call to the marching-cube algorithm remeshes the surface of a voxelized domain.
template<typename T>
void isoSurfaceMarchingCube (
std::vector<typename TriangleSet<T>::Triangle>& triangles,
VoxelizedDomain3D<T>& voxelizedDomain, Box3D const& domain );
/// This wrapper call to the marching-cube algorithm computes iso-surfaces from a scalar-field.
template<typename T>
void isoSurfaceMarchingCube (
std::vector<typename TriangleSet<T>::Triangle>& triangles,
MultiScalarField3D<T>& scalarField, std::vector<T> const& isoLevels, Box3D const& domain );
/// This wrapper call to the marching-cube algorithm computes iso-surfaces from an analytical description.
template<typename T, class Function>
void isoSurfaceMarchingCube (
std::vector<typename TriangleSet<T>::Triangle>& triangles, MultiBlock3D& block, Function const& function, Box3D const& domain );
template<typename T, template<typename U> class Descriptor>
TriangleSet<T> vofToTriangles(MultiScalarField3D<T>& scalarField, T threshold, Box3D domain);
template<typename T, template<typename U> class Descriptor>
TriangleSet<T> vofToTriangles(MultiScalarField3D<T>& scalarField, T threshold);
template<typename T>
class IsoSurfaceDefinition3D {
public:
virtual ~IsoSurfaceDefinition3D() { }
virtual bool isInside (
plint surfaceId, Array<plint,3> const& position ) const =0;
virtual bool isValid(Array<plint,3> const& position) const { return true; }
virtual Array<T,3> getSurfacePosition (
plint surfaceId, Array<plint,3> const& p1, Array<plint,3> const& p2 ) const =0;
virtual void setArguments(std::vector<AtomicBlock3D*> const& arguments) =0;
virtual IsoSurfaceDefinition3D<T>* clone() const =0;
virtual plint getNumArgs() const =0;
virtual std::vector<plint> getSurfaceIds() const=0;
public:
bool edgeIsValid(plint iX, plint iY, plint iZ, int edge) const;
};
template<typename T>
class ScalarFieldIsoSurface3D : public IsoSurfaceDefinition3D<T> {
public:
ScalarFieldIsoSurface3D(std::vector<T> const& isoValues_);
virtual bool isInside (
plint surfaceId, Array<plint,3> const& position ) const;
virtual Array<T,3> getSurfacePosition (
plint surfaceId, Array<plint,3> const& p1, Array<plint,3> const& p2 ) const;
virtual void setArguments(std::vector<AtomicBlock3D*> const& arguments);
virtual ScalarFieldIsoSurface3D<T>* clone() const;
virtual plint getNumArgs() const { return 1; }
virtual std::vector<plint> getSurfaceIds() const;
private:
std::vector<T> isoValues;
ScalarField3D<T>* scalar;
Dot3D location;
};
template<typename T, class Function>
class AnalyticalIsoSurface3D : public IsoSurfaceDefinition3D<T> {
public:
AnalyticalIsoSurface3D(Function const& function_)
: function(function_)
{ }
virtual bool isInside (
plint surfaceId, Array<plint,3> const& position ) const;
virtual Array<T,3> getSurfacePosition (
plint surfaceId, Array<plint,3> const& p1, Array<plint,3> const& p2 ) const;
virtual void setArguments(std::vector<AtomicBlock3D*> const& arguments) { }
virtual AnalyticalIsoSurface3D<T,Function>* clone() const;
virtual plint getNumArgs() const { return 0; }
virtual std::vector<plint> getSurfaceIds() const;
private:
class WrappedIsInside {
public:
WrappedIsInside(Array<T,3> const& p1_, Array<T,3> const& p2_, Function const& function_)
: p1(p1_), p2(p2_), function(function_)
{ }
T operator()(T position) const {
if (function.floatIsInside(p1+position*(p2-p1))) {
return (T)1;
}
else {
return (T)-1;
}
}
private:
Array<T,3> p1, p2;
Function function;
};
private:
Function function;
};
template<typename T, class SurfaceData>
class BoundaryShapeIsoSurface3D : public IsoSurfaceDefinition3D<T> {
public:
BoundaryShapeIsoSurface3D(BoundaryShape3D<T,SurfaceData>* shape_);
virtual ~BoundaryShapeIsoSurface3D();
BoundaryShapeIsoSurface3D(BoundaryShapeIsoSurface3D<T,SurfaceData> const& rhs);
BoundaryShapeIsoSurface3D<T,SurfaceData>& operator=(BoundaryShapeIsoSurface3D<T,SurfaceData> const& rhs);
void swap(BoundaryShapeIsoSurface3D<T,SurfaceData>& rhs);
virtual bool isInside (
plint surfaceId, Array<plint,3> const& position ) const;
virtual Array<T,3> getSurfacePosition (
plint surfaceId, Array<plint,3> const& p1, Array<plint,3> const& p2 ) const;
/// Arguments are:
/// 1. voxelizedDomain.getVoxelMatrix()
/// 2. voxelizedDomain.getTriangleHash()
/// 3. Argument needed by the boundary profiles.
virtual void setArguments(std::vector<AtomicBlock3D*> const& arguments);
virtual BoundaryShapeIsoSurface3D<T,SurfaceData>* clone() const;
virtual plint getNumArgs() const { return 3; }
virtual std::vector<plint> getSurfaceIds() const;
private:
BoundaryShape3D<T,SurfaceData>* shape;
};
template<typename T>
class MarchingCubeSurfaces3D : public BoxProcessingFunctional3D {
public:
typedef typename TriangleSet<T>::Triangle Triangle;
public:
MarchingCubeSurfaces3D( std::vector<plint> surfaceIds_,
IsoSurfaceDefinition3D<T>* isoSurface_,
bool edgeOrientedData_=false );
~MarchingCubeSurfaces3D();
MarchingCubeSurfaces3D(MarchingCubeSurfaces3D<T> const& rhs);
MarchingCubeSurfaces3D<T>& operator=(MarchingCubeSurfaces3D<T> const& rhs);
void swap(MarchingCubeSurfaces3D<T>& rhs);
virtual void processGenericBlocks (
Box3D domain, std::vector<AtomicBlock3D*> fields );
virtual void defaultImplementation (
Box3D domain, AtomicContainerBlock3D* triangleContainer );
virtual void edgeOriented (
Box3D domain, AtomicContainerBlock3D* triangleContainer );
virtual MarchingCubeSurfaces3D<T>* clone() const;
virtual void getTypeOfModification(std::vector<modif::ModifT>& modified) const;
void setEdgeOrientedEnvelope(plint edgeOrientedEnvelope_) {
edgeOrientedEnvelope = edgeOrientedEnvelope_;
}
public:
class TriangleSetData : public ContainerBlockData {
public:
std::vector<Triangle> triangles;
virtual TriangleSetData* clone() const {
return new TriangleSetData(*this);
}
};
class EdgeOrientedTriangleSetData : public ContainerBlockData {
public:
/// Holds the topology of a triangle, by stating on which edges its
/// vertices are situated.
struct OnEdgeTriangle {
/** The edge-attribution is stored for two vertices only, because
* the first vertex is, by definition, stored on the current edge.
* An edge is defined by four coordinates: 3 coordinates for the cell,
* and an identifier (0,1, or 2) for the edge.
*/
Array<plint,4> vertex1, vertex2;
};
public:
EdgeOrientedTriangleSetData(plint nx, plint ny, plint nz)
: data(nx,ny,nz)
{ }
virtual EdgeOrientedTriangleSetData* clone() const {
return new EdgeOrientedTriangleSetData(*this);
}
void addTriangle( plint iX, plint iY, plint iZ, int iEdge,
OnEdgeTriangle const& triangle )
{
switch(iEdge) {
case 0: data.get(iX,iY,iZ).edge1triangles.push_back(triangle); break;
case 1: data.get(iX,iY,iZ).edge2triangles.push_back(triangle); break;
case 2: data.get(iX,iY,iZ).edge3triangles.push_back(triangle); break;
default: PLB_ASSERT( false );
}
}
std::vector<OnEdgeTriangle> const& getTriangles(plint iX, plint iY, plint iZ, int iEdge) const {
switch(iEdge) {
case 0: return data.get(iX,iY,iZ).edge1triangles;
case 1: return data.get(iX,iY,iZ).edge2triangles;
case 2: return data.get(iX,iY,iZ).edge3triangles;
default: PLB_ASSERT( false );
}
}
void setVertex(plint iX, plint iY, plint iZ, int iEdge, Array<T,3> const& vertex) {
switch(iEdge) {
case 0:
data.get(iX,iY,iZ).edge1Vertex = vertex;
data.get(iX,iY,iZ).edge1VertexDefined = true;
break;
case 1:
data.get(iX,iY,iZ).edge2Vertex = vertex;
data.get(iX,iY,iZ).edge2VertexDefined = true;
break;
case 2:
data.get(iX,iY,iZ).edge3Vertex = vertex;
data.get(iX,iY,iZ).edge3VertexDefined = true;
break;
default: PLB_ASSERT( false );
}
}
bool getVertex(plint iX, plint iY, plint iZ, int iEdge, Array<T,3>& vertex) const {
switch(iEdge) {
case 0:
vertex = data.get(iX,iY,iZ).edge1Vertex;
return data.get(iX,iY,iZ).edge1VertexDefined;
case 1:
vertex = data.get(iX,iY,iZ).edge2Vertex;
return data.get(iX,iY,iZ).edge2VertexDefined;
case 2:
vertex = data.get(iX,iY,iZ).edge3Vertex;
return data.get(iX,iY,iZ).edge3VertexDefined;
default: PLB_ASSERT( false );
}
}
std::vector<Array<Array<T,3>,3> > reconstructTriangles(plint iX, plint iY, plint iZ, plint iEdge) const
{
std::vector<Array<Array<T,3>,3> > triangles;
EdgeData& localData = data.get(iX,iY,iZ);
switch(iEdge) {
case 0:
if (!localData.edge1VertexDefined) break;
for (pluint i=0; i<localData.edge1triangles; ++i) {
Array<T,3> vertex1 = localData.edge1Vertex;
Array<plint,4> v2info = localData.edge1triangles[i].vertex1;
Array<T,3> vertex2 = data.get(v2info[0], v2info[1], v2info[2]).getVertex(v2info[3]);
Array<plint,4> v3info = localData.edge1triangles[i].vertex2;
Array<T,3> vertex3 = data.get(v3info[0], v3info[1], v3info[2]).getVertex(v3info[3]);
triangles.push_back(Array<Array<T,3>,3>(vertex1,vertex2,vertex3));
}
break;
case 1:
if (!localData.edge2VertexDefined) break;
for (pluint i=0; i<localData.edge2triangles; ++i) {
Array<T,3> vertex1 = localData.edge1Vertex;
Array<plint,4> v2info = localData.edge2triangles[i].vertex1;
Array<T,3> vertex2 = data.get(v2info[0], v2info[1], v2info[2]).getVertex(v2info[3]);
Array<plint,4> v3info = localData.edge2triangles[i].vertex2;
Array<T,3> vertex3 = data.get(v3info[0], v3info[1], v3info[2]).getVertex(v3info[3]);
triangles.push_back(Array<Array<T,3>,3>(vertex1,vertex2,vertex3));
}
break;
case 2:
if (!localData.edge3VertexDefined) break;
for (pluint i=0; i<localData.edge3triangles; ++i) {
Array<T,3> vertex1 = localData.edge1Vertex;
Array<plint,4> v2info = localData.edge3triangles[i].vertex1;
Array<T,3> vertex2 = data.get(v2info[0], v2info[1], v2info[2]).getVertex(v2info[3]);
Array<plint,4> v3info = localData.edge3triangles[i].vertex2;
Array<T,3> vertex3 = data.get(v3info[0], v3info[1], v3info[2]).getVertex(v3info[3]);
triangles.push_back(Array<Array<T,3>,3>(vertex1,vertex2,vertex3));
}
break;
}
return triangles;
}
T getVertexArea(plint iX, plint iY, plint iZ, int iEdge) const
{
EdgeData& localData = data.get(iX,iY,iZ);
switch(iEdge) {
case 0:
if (!localData.edge1VertexDefined) {
return -1.0;
}
else {
std::vector<Array<Array<T,3>,3> > triangles = reconstructTriangles(iX,iY,iZ, iEdge);
T area=T();
for (pluint i=0; i<triangles.size(); ++i) {
Array<Array<T,3>,3> const& triangle = triangles[i];
T nextArea = computeTriangleArea(triangle[0], triangle[1], triangle[2]);
area += nextArea;
}
return area / (T)3.0;
}
case 1:
if (!localData.edge2VertexDefined) {
return -1.0;
}
else {
std::vector<Array<Array<T,3>,3> > triangles = reconstructTriangles(iX,iY,iZ, iEdge);
T area=T();
for (pluint i=0; i<triangles.size(); ++i) {
Array<Array<T,3>,3> const& triangle = triangles[i];
T nextArea = computeTriangleArea(triangle[0], triangle[1], triangle[2]);
area += nextArea;
}
return area / (T)3.0;
}
case 2:
if (!localData.edge3VertexDefined) {
return -1.0;
}
else {
std::vector<Array<Array<T,3>,3> > triangles = reconstructTriangles(iX,iY,iZ, iEdge);
T area=T();
for (pluint i=0; i<triangles.size(); ++i) {
Array<Array<T,3>,3> const& triangle = triangles[i];
T nextArea = computeTriangleArea(triangle[0], triangle[1], triangle[2]);
area += nextArea;
}
return area / (T)3.0;
}
default: PLB_ASSERT( false );
}
}
std::vector<T> const& getScalars(plint iX, plint iY, plint iZ, int iEdge) const {
switch(iEdge) {
case 0: return data.get(iX,iY,iZ).scalars1;
case 1: return data.get(iX,iY,iZ).scalars2;
case 2: return data.get(iX,iY,iZ).scalars3;
default: PLB_ASSERT( false );
}
}
std::vector<T>& getScalars(plint iX, plint iY, plint iZ, int iEdge) {
switch(iEdge) {
case 0: return data.get(iX,iY,iZ).scalars1;
case 1: return data.get(iX,iY,iZ).scalars2;
case 2: return data.get(iX,iY,iZ).scalars3;
default: PLB_ASSERT( false );
}
}
bool isEdgeVertexDefined(plint iX, plint iY, plint iZ, int iEdge) {
switch(iEdge) {
case 0: return data.get(iX,iY,iZ).edge1VertexDefined;
case 1: return data.get(iX,iY,iZ).edge2VertexDefined;
case 2: return data.get(iX,iY,iZ).edge3VertexDefined;
default: PLB_ASSERT( false );
}
}
plint getNx() const { return data.getNx(); }
plint getNy() const { return data.getNy(); }
plint getNz() const { return data.getNz(); }
Box3D getBoundingBox() const { return data.getBoundingBox(); }
private:
struct EdgeData {
EdgeData()
: edge1VertexDefined(false),
edge2VertexDefined(false),
edge3VertexDefined(false)
{ }
Array<T,3> const& getVertex(plint iEdge) const {
switch(iEdge) {
case 0: return edge1Vertex;
case 1: return edge2Vertex;
case 2: return edge3Vertex;
}
}
// Each element in the three following vectors defines the topology of
// a triangle.
std::vector<OnEdgeTriangle> edge1triangles;
std::vector<OnEdgeTriangle> edge2triangles;
std::vector<OnEdgeTriangle> edge3triangles;
// Every edge has at most one vertex which is shared by all
// triangles that have a vertex on this edge.
Array<T,3> edge1Vertex, edge2Vertex, edge3Vertex;
std::vector<T> scalars1, scalars2, scalars3;
bool edge1VertexDefined, edge2VertexDefined, edge3VertexDefined;
};
private:
ScalarField3D<EdgeData> data;
};
private:
void marchingCubeImpl (
plint iX, plint iY, plint iZ, plint surfaceId,
std::vector<Triangle>& triangles,
int& cubeIndex, std::vector<Array<T,3> >& vertlist );
void polygonize (
plint iX, plint iY, plint iZ, plint surfaceId,
std::vector<Triangle>& triangles );
/// Edge attribution contains three integers to label the cell ID,
/// and one integer to label one of the three edges assigned to this cell.
void polygonize (
plint iX, plint iY, plint iZ, plint surfaceId,
std::vector<Triangle>& triangles,
std::vector<Array<plint,4> >& edgeAttributions );
static void removeFromVertex (
Array<T,3> const& p0, Array<T,3> const& p1, Array<T,3>& intersection );
private:
std::vector<plint> surfaceIds;
IsoSurfaceDefinition3D<T>* isoSurface;
bool edgeOrientedData;
plint edgeOrientedEnvelope;
};
struct MarchingCubeConstants {
static const int edgeTable[256];
static const int triTable[256][16];
static const int edgeNeighb[12][3];
static const int edgeOrient[12];
};
} // namespace plb
#endif // MARCHING_CUBE_H
|