This file is indexed.

/usr/include/palabos/offLattice/immersedWalls3D.h is in libplb-dev 1.5~r1+repack1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
/* This file is part of the Palabos library.
 *
 * Copyright (C) 2011-2015 FlowKit Sarl
 * Route d'Oron 2
 * 1010 Lausanne, Switzerland
 * E-mail contact: contact@flowkit.com
 *
 * The most recent release of Palabos can be downloaded at 
 * <http://www.palabos.org/>
 *
 * The library Palabos is free software: you can redistribute it and/or
 * modify it under the terms of the GNU Affero General Public License as
 * published by the Free Software Foundation, either version 3 of the
 * License, or (at your option) any later version.
 *
 * The library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Affero General Public License for more details.
 *
 * You should have received a copy of the GNU Affero General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
*/

#ifndef IMMERSED_WALLS_3D_H
#define IMMERSED_WALLS_3D_H

#include "core/globalDefs.h"
#include "core/array.h"
#include "atomicBlock/dataProcessingFunctional3D.h"
#include "atomicBlock/dataField3D.h"

namespace plb {

/* ******** InamuroDeltaFunction ************************************ */

template<typename T>
class InamuroDeltaFunction {
public:
    InamuroDeltaFunction(int N_)
        : N(N_),
          dx(4./(T)N),
          invDx(1./dx)
    {
        sampleFunction();
    }
    T rawValue(T r) const {
        T rabs = std::fabs(r);
        T rsqr = r*r;
        if (rabs<1.) {
            return 0.125*(3.-2.*rabs+std::sqrt(1.+4.*rabs-4.*rsqr));
        }
        else if (rabs<2.) {
            return 0.125*(5.-2.*rabs-std::sqrt(-7.+12.*rabs-4.*rsqr));
        }
        else {
            return 0.;
        }
    }
    T w(T r) const {
        int position = (int)((r+2.0)*invDx+0.5);
        if (position<=0) {
            return 0.;
        }
        if (position>=N) {
            return 0.;
        }
        return samples[position];
    }
    T W(Array<T,3> const& r) const {
        return w(r[0])*w(r[1])*w(r[2]);
    }
private:
    void sampleFunction() {
        samples.resize(N+1);
        for(int i=0; i<=N; ++i) {
            samples[i] = rawValue(-2.+dx*i);
        }
    }
private:
    int N;
    T dx, invDx;
    std::vector<T> samples;
};

template<typename T>
InamuroDeltaFunction<T> const& inamuroDeltaFunction() {
    static InamuroDeltaFunction<T> deltaFunction(1000);
    return deltaFunction;
}

/* ******** ImmersedWallData3D ************************************ */

template<typename T>
struct ImmersedWallData3D : public ContainerBlockData
{
    Array<T,3> offset; // To convert vertices from local to absolute units.
    std::vector< Array<T,3> > vertices;
    std::vector<T> areas;
    std::vector< Array<T,3> > normals;
    std::vector< Array<T,3> > g;
    std::vector<int> flags; // Flag for each vertex used to distinguish between vertices for conditional reduction operations.
    std::vector<pluint> globalVertexIds;
    virtual ImmersedWallData3D<T>* clone() const {
        return new ImmersedWallData3D<T>(*this);
    }
};

/* ******** Utility functions ************************************ */

template<typename T>
inline bool closedOpenContained(Array<T,3> const& x, Box3D const& box) { 
    return x[0]>=(box.x0-0.5) && x[0]<(box.x1+0.5) &&
           x[1]>=(box.y0-0.5) && x[1]<(box.y1+0.5) &&
           x[2]>=(box.z0-0.5) && x[2]<(box.z1+0.5);
    // in order to count correctly the particles, a 0.5 must be added
}

/* ******** ReduceAxialTorqueImmersed3D ************************************ */

// The reduced quantity is computed only for the vertices which have a flag
// equal to "reductionFlag".
template<typename T>
class ReduceAxialTorqueImmersed3D : public PlainReductiveBoxProcessingFunctional3D
{
public:
    ReduceAxialTorqueImmersed3D(Array<T,3> const& center_, Array<T,3> const& unitaryAxis_, int reductionFlag_ = 0);
    virtual void processGenericBlocks(Box3D domain, std::vector<AtomicBlock3D*> fields);
    virtual ReduceAxialTorqueImmersed3D<T>* clone() const;
    virtual void getTypeOfModification(std::vector<modif::ModifT>& modified) const;
    virtual BlockDomain::DomainT appliesTo() const;
    Array<T,3> getSumTorque() const;
private:
    Array<T,3> center, unitaryAxis;
    Array<plint,3> sum_torque_ids;
    int reductionFlag;
};

template<typename T>
Array<T,3> reduceAxialTorqueImmersed(MultiContainerBlock3D& container, Array<T,3> center, Array<T,3> unitaryAxis,
        int reductionFlag = 0)
{
    std::vector<MultiBlock3D*> args;
    args.push_back(&container);
    ReduceAxialTorqueImmersed3D<T> functional(center, unitaryAxis, reductionFlag);
    applyProcessingFunctional(functional, container.getBoundingBox(), args);
    return functional.getSumTorque();
}

/* ******** ReduceImmersedForce3D ************************************ */

// The reduced quantity is computed only for the vertices which have a flag
// equal to "reductionFlag".
template<typename T>
class ReduceImmersedForce3D : public PlainReductiveBoxProcessingFunctional3D
{
public:
    ReduceImmersedForce3D(int reductionFlag_ = 0);
    virtual void processGenericBlocks(Box3D domain, std::vector<AtomicBlock3D*> fields);
    virtual ReduceImmersedForce3D<T>* clone() const;
    virtual void getTypeOfModification(std::vector<modif::ModifT>& modified) const;
    virtual BlockDomain::DomainT appliesTo() const;
    Array<T,3> getSumG() const;
private:
    Array<plint,3> sum_g_ids;
    int reductionFlag;
};

template<typename T>
Array<T,3> reduceImmersedForce(MultiContainerBlock3D& container, int reductionFlag = 0)
{
    std::vector<MultiBlock3D*> args;
    args.push_back(&container);
    ReduceImmersedForce3D<T> functional(reductionFlag);
    applyProcessingFunctional(functional, container.getBoundingBox(), args);
    return functional.getSumG();
}

/* ******** ReduceImmersedArea3D ************************************ */

// The reduced quantity is computed only for the vertices which have a flag
// equal to "reductionFlag".
template<typename T>
class ReduceImmersedArea3D : public PlainReductiveBoxProcessingFunctional3D
{
public:
    ReduceImmersedArea3D(int reductionFlag_ = 0);
    virtual void processGenericBlocks(Box3D domain, std::vector<AtomicBlock3D*> fields);
    virtual ReduceImmersedArea3D<T>* clone() const;
    virtual void getTypeOfModification(std::vector<modif::ModifT>& modified) const;
    virtual BlockDomain::DomainT appliesTo() const;
    T getSumArea() const;
private:
    plint sum_area_id;
    int reductionFlag;
};

template<typename T>
T reduceImmersedArea(MultiContainerBlock3D& container, int reductionFlag = 0)
{
    std::vector<MultiBlock3D*> args;
    args.push_back(&container);
    ReduceImmersedArea3D<T> functional(reductionFlag);
    applyProcessingFunctional(functional, container.getBoundingBox(), args);
    return functional.getSumArea();
}

/* ******** InamuroIteration3D ************************************ */

template<typename T, class VelFunction>
class InamuroIteration3D : public BoxProcessingFunctional3D
{
public:
    InamuroIteration3D(VelFunction velFunction_, T tau_, bool incompressibleModel_);
    virtual void processGenericBlocks(Box3D domain, std::vector<AtomicBlock3D*> fields);
    virtual InamuroIteration3D<T,VelFunction>* clone() const;
    virtual void getTypeOfModification(std::vector<modif::ModifT>& modified) const;
    virtual BlockDomain::DomainT appliesTo() const;
private:
    VelFunction velFunction;
    T tau;
    bool incompressibleModel;
};

template<typename T, class VelFunction>
void inamuroIteration (
    VelFunction velFunction,
    MultiScalarField3D<T>& rhoBar,
    MultiTensorField3D<T,3>& j,
    MultiContainerBlock3D& container, T tau,
    bool incompressibleModel )
{
    std::vector<MultiBlock3D*> args;
    args.push_back(&rhoBar);
    args.push_back(&j);
    args.push_back(&container);
    applyProcessingFunctional (
        new InamuroIteration3D<T,VelFunction>(velFunction, tau, incompressibleModel), rhoBar.getBoundingBox(), args );
}

/* ******** IndexedInamuroIteration3D ************************************ */

// This is the same as InamuroIteration3D, with the difference that
// the VelFunction accepts as argument a global vertex index instead of
// a 3D position in space.
template<typename T, class VelFunction>
class IndexedInamuroIteration3D : public BoxProcessingFunctional3D
{
public:
    IndexedInamuroIteration3D(VelFunction velFunction_, T tau_, bool incompressibleModel_);
    virtual void processGenericBlocks(Box3D domain, std::vector<AtomicBlock3D*> fields);
    virtual IndexedInamuroIteration3D<T,VelFunction>* clone() const;
    virtual void getTypeOfModification(std::vector<modif::ModifT>& modified) const;
    virtual BlockDomain::DomainT appliesTo() const;
private:
    VelFunction velFunction;
    T tau;
    bool incompressibleModel;
};

template<typename T, class VelFunction>
void indexedInamuroIteration (
    VelFunction velFunction,
    MultiScalarField3D<T>& rhoBar,
    MultiTensorField3D<T,3>& j,
    MultiContainerBlock3D& container, T tau,
    bool incompressibleModel )
{
    std::vector<MultiBlock3D*> args;
    args.push_back(&rhoBar);
    args.push_back(&j);
    args.push_back(&container);
    applyProcessingFunctional (
        new IndexedInamuroIteration3D<T,VelFunction>(velFunction, tau, incompressibleModel), rhoBar.getBoundingBox(), args );
}

/* ******** ConstVelInamuroIteration3D ************************************ */

template<typename T>
class ConstVelInamuroIteration3D : public BoxProcessingFunctional3D
{
public:
    ConstVelInamuroIteration3D(Array<T,3> const& wallVelocity_, T tau_, bool incompressibleModel_);
    virtual void processGenericBlocks(Box3D domain, std::vector<AtomicBlock3D*> fields);
    virtual ConstVelInamuroIteration3D<T>* clone() const;
    virtual void getTypeOfModification(std::vector<modif::ModifT>& modified) const;
    virtual BlockDomain::DomainT appliesTo() const;
private:
    Array<T,3> wallVelocity;
    T tau;
    bool incompressibleModel;
};

template<typename T>
void constVelInamuroIteration (
    Array<T,3> const& wallVelocity,
    MultiScalarField3D<T>& rhoBar,
    MultiTensorField3D<T,3>& j,
    MultiContainerBlock3D& container, T tau,
    bool incompressibleModel )
{
    std::vector<MultiBlock3D*> args;
    args.push_back(&rhoBar);
    args.push_back(&j);
    args.push_back(&container);
    applyProcessingFunctional (
        new ConstVelInamuroIteration3D<T>(wallVelocity, tau, incompressibleModel), rhoBar.getBoundingBox(), args );
}



/* ******** ComputeImmersedBoundaryForce3D ************************************ */

// This functional computes the immersed boundary force on the lattice and
// stores it in a provided tensor field. This data processor must be called
// after all the immersed boundary iterations have completed.
template<typename T>
class ComputeImmersedBoundaryForce3D : public BoxProcessingFunctional3D
{
public:
    virtual void processGenericBlocks(Box3D domain, std::vector<AtomicBlock3D*> fields);
    virtual ComputeImmersedBoundaryForce3D<T>* clone() const;
    virtual void getTypeOfModification(std::vector<modif::ModifT>& modified) const;
    virtual BlockDomain::DomainT appliesTo() const;
};

template<typename T>
void computeImmersedBoundaryForce3D(MultiTensorField3D<T,3>& force, MultiContainerBlock3D& container)
{
    std::vector<MultiBlock3D*> args;
    args.push_back(&force);
    args.push_back(&container);
    applyProcessingFunctional (
        new ComputeImmersedBoundaryForce3D<T>, force.getBoundingBox(), args );
}


/* ******** InstantiateImmersedWallData3D ************************************ */

template<typename T>
class InstantiateImmersedWallData3D : public BoxProcessingFunctional3D
{
public:
    InstantiateImmersedWallData3D (
            std::vector< Array<T,3> > const& vertices_,
            std::vector<T> const& areas_,
            std::vector< Array<T,3> > const& normals_);
    virtual void processGenericBlocks(Box3D domain, std::vector<AtomicBlock3D*> fields);
    virtual InstantiateImmersedWallData3D<T>* clone() const;
    virtual void getTypeOfModification(std::vector<modif::ModifT>& modified) const;
    virtual BlockDomain::DomainT appliesTo() const;
private:
    std::vector< Array<T,3> > const& vertices;
    std::vector<T> const& areas;
    std::vector< Array<T,3> > const& normals;
};

template<typename T>
void instantiateImmersedWallData (
            std::vector< Array<T,3> > const& vertices, std::vector<T> const& areas,
            MultiContainerBlock3D& container )
{ 
    static std::vector< Array<T,3> > dummyNormals;
    std::vector<MultiBlock3D*> args;
    args.push_back(&container);
    applyProcessingFunctional (
            new InstantiateImmersedWallData3D<T>(vertices,areas,dummyNormals), container.getBoundingBox(), args );
}

template<typename T>
void instantiateImmersedWallData (
            std::vector< Array<T,3> > const& vertices, std::vector<T> const& areas,
            std::vector< Array<T,3> > const& normals, MultiContainerBlock3D& container )
{ 
    std::vector<MultiBlock3D*> args;
    args.push_back(&container);
    applyProcessingFunctional (
            new InstantiateImmersedWallData3D<T>(vertices,areas,normals), container.getBoundingBox(), args );
}

/* ******** InstantiateImmersedWallDataWithTagging3D ************************************ */

template<typename T>
class InstantiateImmersedWallDataWithTagging3D : public BoxProcessingFunctional3D
{
public:
    InstantiateImmersedWallDataWithTagging3D (
            std::vector< Array<T,3> > const& vertices_,
            std::vector<T> const& areas_, int fluidFlag_ );
    virtual void processGenericBlocks(Box3D domain, std::vector<AtomicBlock3D*> fields);
    virtual InstantiateImmersedWallDataWithTagging3D<T>* clone() const;
    virtual void getTypeOfModification(std::vector<modif::ModifT>& modified) const;
    virtual BlockDomain::DomainT appliesTo() const;
private:
    std::vector< Array<T,3> > const& vertices;
    std::vector<T> const& areas;
    int fluidFlag;
};

template<typename T>
void instantiateImmersedWallDataWithTagging (
            std::vector< Array<T,3> > const& vertices, std::vector<T> const& areas,
            MultiContainerBlock3D& container, MultiScalarField3D<int>& flags, int fluidFlag )
{
    std::vector<MultiBlock3D*> args;
    args.push_back(&container);
    args.push_back(&flags);
    applyProcessingFunctional (
            new InstantiateImmersedWallDataWithTagging3D<T>(vertices,areas,fluidFlag), container.getBoundingBox(), args );
}

/* ******** InstantiateImmersedWallDataWithIndexedTagging3D ************************************ */

// This is the same as InstantiateImmersedWallDataWithTagging3D, but instead of a MultiScalarField3D
// of flags given to compute the flags of the ImmersedWallData3D, a vector of flags on every
// vertex of the immersed walls is provided.
template<typename T>
class InstantiateImmersedWallDataWithIndexedTagging3D : public BoxProcessingFunctional3D
{
public:
    InstantiateImmersedWallDataWithIndexedTagging3D (
            std::vector< Array<T,3> > const& vertices_,
            std::vector<T> const& areas_,
            std::vector<int> const& flags_ );
    virtual void processGenericBlocks(Box3D domain, std::vector<AtomicBlock3D*> fields);
    virtual InstantiateImmersedWallDataWithIndexedTagging3D<T>* clone() const;
    virtual void getTypeOfModification(std::vector<modif::ModifT>& modified) const;
    virtual BlockDomain::DomainT appliesTo() const;
private:
    std::vector< Array<T,3> > const& vertices;
    std::vector<T> const& areas;
    std::vector<int> const& flags;
};

template<typename T>
void instantiateImmersedWallDataWithIndexedTagging (
            std::vector< Array<T,3> > const& vertices, std::vector<T> const& areas,
            std::vector<int> const& flags, MultiContainerBlock3D& container )
{
    std::vector<MultiBlock3D*> args;
    args.push_back(&container);
    applyProcessingFunctional (
            new InstantiateImmersedWallDataWithIndexedTagging3D<T>(vertices, areas, flags),
            container.getBoundingBox(), args );
}

/* ******** ResetForceStatistics3D ************************************ */

// This data processor resets to zero the "per surface vertex" force vectors
// which reside in the immersed data container field. This is used for
// optimization purposes. Sometimes when the surface is not moving, the user
// should instantiate the immersed wall data only once, and not at every
// itaration. Doing so, would not work for the force computations, since the
// forces are added up during the Inamuro iterations. This is why, before
// measuring the forces, one must call this data processor, so that the force
// variable in the container is set back to zero.
template<typename T>
class ResetForceStatistics3D : public BoxProcessingFunctional3D
{
public:
    ResetForceStatistics3D()
    { }
    virtual void processGenericBlocks(Box3D domain, std::vector<AtomicBlock3D*> fields);
    virtual ResetForceStatistics3D<T>* clone() const;
    virtual void getTypeOfModification(std::vector<modif::ModifT>& modified) const;
    virtual BlockDomain::DomainT appliesTo() const;
};

template<typename T>
void resetForceStatistics(MultiContainerBlock3D& container)
{ 
    std::vector<MultiBlock3D*> args;
    args.push_back(&container);
    applyProcessingFunctional(new ResetForceStatistics3D<T>(), container.getBoundingBox(), args);
}

/* ******** RecomputeImmersedForce3D ************************************ */

// This class recomputes the immersed force (variable "g" in the ImmersedWallData3D)
// by using the classical stress tensor relation.
// The normalFunction is a function:
//   Array<T,3> normalFunction(plint id);
// which takes a global vertex id and computes the unit normal at that point.
template<typename T, template<typename U> class Descriptor, class NormalFunction>
class RecomputeImmersedForce3D : public BoxProcessingFunctional3D
{
public:
    RecomputeImmersedForce3D(NormalFunction normalFunction_, T omega_,
            T densityOffset_, bool incompressibleModel_);
    virtual void processGenericBlocks(Box3D domain, std::vector<AtomicBlock3D*> blocks);
    virtual RecomputeImmersedForce3D<T,Descriptor,NormalFunction>* clone() const;
    virtual void getTypeOfModification(std::vector<modif::ModifT>& modified) const;
    virtual BlockDomain::DomainT appliesTo() const;
private:
    NormalFunction normalFunction;
    T omega;
    T rho0;
    bool incompressibleModel;
};

template<typename T, template<typename U> class Descriptor, class NormalFunction>
void recomputeImmersedForce(NormalFunction normalFunction, T omega,
        T densityOffset, MultiBlockLattice3D<T,Descriptor>& lattice,
        MultiContainerBlock3D& container, plint envelopeWidth, Box3D domain,
        bool incompressibleModel)
{
    // TODO: The next commented-out version is how it is supposed to work, but it doesn't because
    // the BoxRhoBarFunctional3D and the BoxPiNeqFunctional3D are applied to bulkAndEnvelope instead
    // of just bulk.
    /*
    std::auto_ptr<MultiScalarField3D<T> > rhoBar = generateMultiScalarField<T>(lattice, envelopeWidth);
    computeRhoBar<T,Descriptor>(lattice, *rhoBar, domain);

    std::auto_ptr<MultiTensorField3D<T,SymmetricTensorImpl<T,3>::n> > PiNeq =
        generateMultiTensorField<T,SymmetricTensorImpl<T,3>::n>(lattice, envelopeWidth);
    computePiNeq<T,Descriptor>(lattice, *PiNeq, domain);

    std::vector<MultiBlock3D*> args;
    args.push_back(rhoBar.get());
    args.push_back(PiNeq.get());
    args.push_back(&container);
    applyProcessingFunctional(new RecomputeImmersedForce3D<T,Descriptor,NormalFunction>(
            normalFunction, omega, densityOffset, incompressibleModel),
            domain, args);
            */

    // TODO: The next is a temporary fix by using the "copy" function which is applied only to the bulk
    // (and not to bulkAndEnvelope).
    std::auto_ptr<MultiScalarField3D<T> > rhoBar = generateMultiScalarField<T>(lattice, envelopeWidth);
    computeRhoBar<T,Descriptor>(lattice, *rhoBar, domain);
    std::auto_ptr<MultiScalarField3D<T> > copiedRhoBar = generateMultiScalarField<T>(*rhoBar, envelopeWidth);
    plb::copy(*rhoBar, *copiedRhoBar, rhoBar->getBoundingBox());

    std::auto_ptr<MultiTensorField3D<T,SymmetricTensorImpl<T,3>::n> > PiNeq =
        generateMultiTensorField<T,SymmetricTensorImpl<T,3>::n>(lattice, envelopeWidth);
    computePiNeq<T,Descriptor>(lattice, *PiNeq, domain);
    std::auto_ptr<MultiTensorField3D<T,SymmetricTensorImpl<T,3>::n> > copiedPiNeq =
        generateMultiTensorField<T,SymmetricTensorImpl<T,3>::n>(*PiNeq, envelopeWidth);
    plb::copy(*PiNeq, *copiedPiNeq, PiNeq->getBoundingBox());

    std::vector<MultiBlock3D*> args;
    args.push_back(copiedRhoBar.get());
    args.push_back(copiedPiNeq.get());
    args.push_back(&container);
    applyProcessingFunctional(new RecomputeImmersedForce3D<T,Descriptor,NormalFunction>(
                normalFunction, omega, densityOffset, incompressibleModel),
            domain, args);
}

/* ******** TwoPhaseInamuroParam3D ************************************ */

template<typename T>
class TwoPhaseInamuroParam3D
{
public:
    TwoPhaseInamuroParam3D(std::vector<AtomicBlock3D*>& blocks, T tau_, T tau2_);
    pluint getNumVertices() const { return numVertices; }
    T area(plint i) const;
    Array<T,3>& g(plint i);
    Array<T,3> vertex(plint i) const;
    Array<T,3> absoluteVertex(plint i) const;
    Array<plint,3> intVertex(plint i) const;
    T rhoBar(plint iX, plint iY, plint iZ) const;
    Array<T,3> j(plint iX, plint iY, plint iZ) const;
    void addToJ(plint iX, plint iY, plint iZ, Array<T,3> deltaJ);
    T getTau(plint iX, plint iY, plint iZ) const;
private:
    int getFlag(plint iX, plint iY, plint iZ) const;
    pluint getGlobalVertexId(plint i) const;
private:
    ScalarField3D<T> *rhoBar_, *rhoBar2_;
    TensorField3D<T,3> *j_, *j2_;
    ScalarField3D<int>* flag_;
    ScalarField3D<T>* volumeFraction_;
    AtomicContainerBlock3D* container;
    ImmersedWallData3D<T>* wallData;
    Dot3D ofsRhoBar2, ofsJ, ofsJ2, ofsFlag, ofsVF;
    Array<T,3> absOffset;
    pluint numVertices;
    T tau, tau2;
};

/* ******** TwoPhaseInamuroIteration3D ************************************ */

template<typename T, class VelFunction>
class TwoPhaseInamuroIteration3D : public BoxProcessingFunctional3D
{
public:
    TwoPhaseInamuroIteration3D(VelFunction velFunction_, T tau_, T tau2_);
    virtual void processGenericBlocks(Box3D domain, std::vector<AtomicBlock3D*> fields);
    virtual TwoPhaseInamuroIteration3D<T,VelFunction>* clone() const;
    virtual void getTypeOfModification(std::vector<modif::ModifT>& modified) const;
    virtual BlockDomain::DomainT appliesTo() const;
private:
    VelFunction velFunction;
    T tau, tau2;
};

template<typename T, class VelFunction>
void twoPhaseInamuroIteration (
    VelFunction velFunction,
    MultiScalarField3D<T>& rhoBar,
    MultiScalarField3D<T>& rhoBar2,
    MultiTensorField3D<T,3>& j,
    MultiTensorField3D<T,3>& j2,
    MultiScalarField3D<int>& flag,
    MultiScalarField3D<T>& volumeFraction,
    MultiContainerBlock3D& container, T tau, T tau2 )
{
    std::vector<MultiBlock3D*> args;
    args.push_back(&rhoBar);
    args.push_back(&rhoBar2);
    args.push_back(&j);
    args.push_back(&j2);
    args.push_back(&flag);
    args.push_back(&volumeFraction);
    args.push_back(&container);
    applyProcessingFunctional (
        new TwoPhaseInamuroIteration3D<T,VelFunction>(velFunction, tau, tau2), rhoBar.getBoundingBox(), args );
}

/* ******** TwoPhaseIndexedInamuroIteration3D ************************************ */

// This is the same as TwoPhaseInamuroIteration3D, with the difference that
// the VelFunction accepts as argument a global vertex index instead of
// a 3D position in space.
template<typename T, class VelFunction>
class TwoPhaseIndexedInamuroIteration3D : public BoxProcessingFunctional3D
{
public:
    TwoPhaseIndexedInamuroIteration3D(VelFunction velFunction_, T tau_, T tau2_);
    virtual void processGenericBlocks(Box3D domain, std::vector<AtomicBlock3D*> fields);
    virtual TwoPhaseIndexedInamuroIteration3D<T,VelFunction>* clone() const;
    virtual void getTypeOfModification(std::vector<modif::ModifT>& modified) const;
    virtual BlockDomain::DomainT appliesTo() const;
private:
    VelFunction velFunction;
    T tau, tau2;
};

template<typename T, class VelFunction>
void twoPhaseIndexedInamuroIteration (
    VelFunction velFunction,
    MultiScalarField3D<T>& rhoBar,
    MultiScalarField3D<T>& rhoBar2,
    MultiTensorField3D<T,3>& j,
    MultiTensorField3D<T,3>& j2,
    MultiScalarField3D<int>& flag,
    MultiScalarField3D<T>& volumeFraction,
    MultiContainerBlock3D& container, T tau, T tau2 )
{
    std::vector<MultiBlock3D*> args;
    args.push_back(&rhoBar);
    args.push_back(&rhoBar2);
    args.push_back(&j);
    args.push_back(&j2);
    args.push_back(&flag);
    args.push_back(&volumeFraction);
    args.push_back(&container);
    applyProcessingFunctional (
        new TwoPhaseIndexedInamuroIteration3D<T,VelFunction>(velFunction, tau, tau2), rhoBar.getBoundingBox(), args );
}

/* ******** TwoPhaseConstVelInamuroIteration3D ************************************ */

template<typename T>
class TwoPhaseConstVelInamuroIteration3D : public BoxProcessingFunctional3D
{
public:
    TwoPhaseConstVelInamuroIteration3D(Array<T,3> const& wallVelocity_, T tau_, T tau2_);
    virtual void processGenericBlocks(Box3D domain, std::vector<AtomicBlock3D*> fields);
    virtual TwoPhaseConstVelInamuroIteration3D<T>* clone() const;
    virtual void getTypeOfModification(std::vector<modif::ModifT>& modified) const;
    virtual BlockDomain::DomainT appliesTo() const;
private:
    Array<T,3> wallVelocity;
    T tau, tau2;
};

template<typename T>
void twoPhaseConstVelInamuroIteration (
    Array<T,3> const& wallVelocity,
    MultiScalarField3D<T>& rhoBar,
    MultiScalarField3D<T>& rhoBar2,
    MultiTensorField3D<T,3>& j,
    MultiTensorField3D<T,3>& j2,
    MultiScalarField3D<int>& flag,
    MultiScalarField3D<T>& volumeFraction,
    MultiContainerBlock3D& container, T tau, T tau2 )
{
    std::vector<MultiBlock3D*> args;
    args.push_back(&rhoBar);
    args.push_back(&rhoBar2);
    args.push_back(&j);
    args.push_back(&j2);
    args.push_back(&flag);
    args.push_back(&volumeFraction);
    args.push_back(&container);
    applyProcessingFunctional (
        new TwoPhaseConstVelInamuroIteration3D<T>(wallVelocity, tau, tau2), rhoBar.getBoundingBox(), args );
}

}  // namespace plb

#endif  // IMMERSED_WALLS_3D_H