/usr/include/palabos/offLattice/filippovaHaenel3D.hh is in libplb-dev 1.5~r1+repack1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 | /* This file is part of the Palabos library.
*
* Copyright (C) 2011-2015 FlowKit Sarl
* Route d'Oron 2
* 1010 Lausanne, Switzerland
* E-mail contact: contact@flowkit.com
*
* The most recent release of Palabos can be downloaded at
* <http://www.palabos.org/>
*
* The library Palabos is free software: you can redistribute it and/or
* modify it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of the
* License, or (at your option) any later version.
*
* The library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef FILIPPOVA_HAENEL_3D_HH
#define FILIPPOVA_HAENEL_3D_HH
#include "offLattice/filippovaHaenel3D.h"
#include "offLattice/nextNeighbors3D.h"
#include "latticeBoltzmann/geometricOperationTemplates.h"
#include "latticeBoltzmann/externalFieldAccess.h"
#include "core/dynamics.h"
#include <algorithm>
#include <vector>
#include <cmath>
namespace plb {
template<typename T, template<typename U> class Descriptor>
FilippovaHaenelModel3D<T,Descriptor>::FilippovaHaenelModel3D (
BoundaryShape3D<T,Array<T,3> >* shape_, int flowType_, bool useAllDirections_ )
: OffLatticeModel3D<T,Array<T,3> >(shape_, flowType_),
computeStat(true)
{ }
template<typename T, template<typename U> class Descriptor>
FilippovaHaenelModel3D<T,Descriptor>* FilippovaHaenelModel3D<T,Descriptor>::clone() const {
return new FilippovaHaenelModel3D(*this);
}
template<typename T, template<typename U> class Descriptor>
plint FilippovaHaenelModel3D<T,Descriptor>::getNumNeighbors() const {
return 1;
}
template<typename T, template<typename U> class Descriptor>
void FilippovaHaenelModel3D<T,Descriptor>::prepareCell (
Dot3D const& cellLocation,
AtomicContainerBlock3D& container )
{
typedef Descriptor<T> D;
Dot3D offset = container.getLocation();
OffLatticeInfo3D* info = dynamic_cast<OffLatticeInfo3D*>(container.getData());
PLB_ASSERT( info );
std::vector<int> liquidNeighbors;
std::vector<plint> ids;
if (!this->isFluid(cellLocation+offset)) {
for (int iPop=0; iPop<D::q; ++iPop) {
Dot3D neighbor(cellLocation.x+D::c[iPop][0], cellLocation.y+D::c[iPop][1], cellLocation.z+D::c[iPop][2]);
// If the non-fluid node has a fluid neighbor ...
if (this->isFluid(neighbor+offset)) {
// ... check how many fluid nodes it has ahead of it ...
plint iTriangle=-1;
global::timer("intersect").start();
Array<T,3> locatedPoint;
T distance;
Array<T,3> wallNormal;
Array<T,3> surfaceData;
OffBoundary::Type bdType;
#ifdef PLB_DEBUG
bool ok =
#endif
this->pointOnSurface (
cellLocation+offset, Dot3D(D::c[iPop][0],D::c[iPop][1],D::c[iPop][2]), locatedPoint, distance,
wallNormal, surfaceData, bdType, iTriangle );
// In the following, the importance of directions is sorted wrt. how well they
// are aligned with the wall normal. It is better to take the continuous normal,
// because it is not sensitive to the choice of the triangle when we shoot at
// an edge.
//wallNormal = this->computeContinuousNormal(locatedPoint, iTriangle);
global::timer("intersect").stop();
PLB_ASSERT( ok );
// ... then add this node to the list.
liquidNeighbors.push_back(iPop);
ids.push_back(iTriangle);
}
}
if (!liquidNeighbors.empty()) {
info->getDryNodes().push_back(cellLocation);
info->getDryNodeFluidDirections().push_back(liquidNeighbors);
info->getDryNodeIds().push_back(ids);
}
}
}
template<typename T, template<typename U> class Descriptor>
ContainerBlockData*
FilippovaHaenelModel3D<T,Descriptor>::generateOffLatticeInfo() const
{
return new OffLatticeInfo3D;
}
template<typename T, template<typename U> class Descriptor>
Array<T,3> FilippovaHaenelModel3D<T,Descriptor>::getLocalForce (
AtomicContainerBlock3D& container ) const
{
OffLatticeInfo3D* info =
dynamic_cast<OffLatticeInfo3D*>(container.getData());
PLB_ASSERT( info );
return info->getLocalForce();
}
template<typename T, template<typename U> class Descriptor>
void FilippovaHaenelModel3D<T,Descriptor>::boundaryCompletion (
AtomicBlock3D& nonTypeLattice,
AtomicContainerBlock3D& container,
std::vector<AtomicBlock3D const*> const& args )
{
BlockLattice3D<T,Descriptor>& lattice =
dynamic_cast<BlockLattice3D<T,Descriptor>&> (nonTypeLattice);
OffLatticeInfo3D* info =
dynamic_cast<OffLatticeInfo3D*>(container.getData());
PLB_ASSERT( info );
std::vector<Dot3D> const&
dryNodes = info->getDryNodes();
std::vector<std::vector<int > > const&
dryNodeFluidDirections = info->getDryNodeFluidDirections();
std::vector<std::vector<plint> > const&
dryNodeIds = info->getDryNodeIds();
PLB_ASSERT( dryNodes.size() == dryNodeFluidDirections.size() );
Dot3D absoluteOffset = lattice.getLocation();
Array<T,3>& localForce = info->getLocalForce();
localForce.resetToZero();
for (pluint iDry=0; iDry<dryNodes.size(); ++iDry) {
cellCompletion (
lattice, dryNodes[iDry], dryNodeFluidDirections[iDry],
dryNodeIds[iDry], absoluteOffset, localForce, args );
}
}
template<typename T, template<typename U> class Descriptor>
void FilippovaHaenelModel3D<T,Descriptor>::cellCompletion (
BlockLattice3D<T,Descriptor>& lattice, Dot3D const& guoNode,
std::vector<int> const& dryNodeFluidDirections,
std::vector<plint> const& dryNodeIds, Dot3D const& absoluteOffset,
Array<T,3>& localForce, std::vector<AtomicBlock3D const*> const& args )
{
typedef Descriptor<T> D;
Cell<T,Descriptor>& s_cell =
lattice.get( guoNode.x, guoNode.y, guoNode.z );
#ifdef PLB_DEBUG
int noDynId =
#endif
NoDynamics<T,Descriptor>().getId();
PLB_ASSERT( s_cell.getDynamics().getId() == noDynId );
for (plint iDirection=0; iDirection<(plint)dryNodeFluidDirections.size(); ++iDirection)
{
int iOpp = dryNodeFluidDirections[iDirection];
int iPop = indexTemplates::opposite<Descriptor<T> >(iOpp);
Dot3D fluidDirection(D::c[iOpp][0],D::c[iOpp][1],D::c[iOpp][2]);
plint dryNodeId = dryNodeIds[iDirection];
Array<T,3> wallNode, wall_vel;
T wallDistance;
OffBoundary::Type bdType;
Cell<T,Descriptor> const& f_cell =
lattice.get( guoNode.x+fluidDirection.x,
guoNode.y+fluidDirection.y,
guoNode.z+fluidDirection.z );
Cell<T,Descriptor> const& ff_cell =
lattice.get( guoNode.x+2*fluidDirection.x,
guoNode.y+2*fluidDirection.y,
guoNode.z+2*fluidDirection.z );
Cell<T,Descriptor> collidedCell(f_cell);
BlockStatistics statsCopy(lattice.getInternalStatistics());
collidedCell.collide(statsCopy);
T f_rhoBar, ff_rhoBar;
Array<T,3> f_j, ff_j;
Array<T,3> wallNormal;
f_cell.getDynamics().computeRhoBarJ(f_cell, f_rhoBar, f_j);
ff_cell.getDynamics().computeRhoBarJ(ff_cell, ff_rhoBar, ff_j);
T f_rho = D::fullRho(f_rhoBar);
T f_jSqr = normSqr(f_j);
#ifdef PLB_DEBUG
bool ok =
#endif
this->pointOnSurface( guoNode+absoluteOffset, fluidDirection,
wallNode, wallDistance, wallNormal,
wall_vel, bdType, dryNodeId );
PLB_ASSERT( ok );
Array<T,3> w_j = wall_vel*f_rho;
T d = std::sqrt(D::cNormSqr[iOpp]);
PLB_ASSERT( wallDistance <= d );
T delta = 1.0-wallDistance / d;
T kappa = 0.;
Array<T,3> wf_j; wf_j.resetToZero();
T omega = f_cell.getDynamics().getOmega();
if (delta<0.5) {
//wf_j = f_j;
//kappa = (omega*(2.0*delta-1.0))/(1.0-omega);
wf_j = ff_j;
kappa = (omega*(2*delta-1.0))/(1.0-2.0*omega);
}
else {
//wf_j = f_j * ((delta-1.0)/delta) + w_j / delta;
//kappa = omega*(2.0*delta-1.0)
wf_j = (1.0-3.0/(2.0*delta))*f_j+3.0/(2.0*delta)*w_j;
kappa = (2.0*omega*(2.0*delta-1.0))/(2.0+omega);
}
T c_i_wf_j_f_j = D::c[iPop][0]*(wf_j[0]-f_j[0]) +
D::c[iPop][1]*(wf_j[1]-f_j[1]) +
D::c[iPop][2]*(wf_j[2]-f_j[2]) ;
T c_i_w_j = D::c[iPop][0]*w_j[0] + D::c[iPop][1]*w_j[1] + D::c[iPop][2]*w_j[2];
T f_ieq = f_cell.getDynamics().computeEquilibrium(iPop, f_rhoBar, f_j, f_jSqr) +
D::t[iPop]*D::invCs2*c_i_wf_j_f_j;
s_cell[iOpp] = (1.0-kappa)*collidedCell[iPop]+kappa*f_ieq+2.0*D::t[iPop]*D::invCs2*c_i_w_j;
localForce[0] += D::c[iPop][0]*(s_cell[iPop]+s_cell[iOpp]);
localForce[1] += D::c[iPop][1]*(s_cell[iPop]+s_cell[iOpp]);
localForce[2] += D::c[iPop][2]*(s_cell[iPop]+s_cell[iOpp]);
}
}
} // namespace plb
#endif // FILIPPOVA_HAENEL_3D_HH
|