/usr/include/palabos/multiPhysics/freeSurfaceUtil3D.h is in libplb-dev 1.5~r1+repack1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 | /* This file is part of the Palabos library.
*
* Copyright (C) 2011-2015 FlowKit Sarl
* Route d'Oron 2
* 1010 Lausanne, Switzerland
* E-mail contact: contact@flowkit.com
*
* The most recent release of Palabos can be downloaded at
* <http://www.palabos.org/>
*
* The library Palabos is free software: you can redistribute it and/or
* modify it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of the
* License, or (at your option) any later version.
*
* The library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef FREE_SURFACE_UTIL_3D_H
#define FREE_SURFACE_UTIL_3D_H
#include "core/globalDefs.h"
#include "core/plbDebug.h"
#include "multiBlock/multiContainerBlock3D.h"
#include "multiBlock/multiDataField3D.h"
#include "multiBlock/multiBlockLattice3D.h"
#include <vector>
#include <set>
#include <string>
namespace plb {
/// Constants used in a free surface flag matrix for cell tagging.
namespace twoPhaseFlag {
enum Flag {empty=0, interface=1, fluid=2, wall=4, protect=5, protectEmpty=6};
inline std::string flagToString(int flag) {
switch(flag) {
case empty: return "empty";
case interface: return "interface";
case fluid: return "fluid";
case wall: return "wall";
case protect: return "protect";
case protectEmpty: return "protectEmpty";
default: PLB_ASSERT( false );
}
return std::string();
}
inline Flag invert(int flag) {
switch(flag) {
case empty: return fluid;
case interface: return interface;
case fluid: return empty;
case wall: return wall;
case protect: return protect;
case protectEmpty: return protectEmpty;
default: PLB_ASSERT( false );
}
return (Flag) (-1);
}
inline bool isWet(int flag) {
return flag==interface || flag==fluid || flag==protect;
}
inline bool isFullWet(int flag) {
return flag==fluid || flag==protect;
}
inline bool isEmpty(int flag) {
return flag==empty || flag==protectEmpty;
}
}
/// Create a parameter-list for most free-surface data processors.
template< typename T,template<typename U> class Descriptor>
std::vector<MultiBlock3D*> aggregateFreeSurfaceParams (
MultiBlockLattice3D<T,Descriptor>& fluid, MultiScalarField3D<T>& rhoBar,
MultiTensorField3D<T,3>& j, MultiScalarField3D<T>& mass,
MultiScalarField3D<T>& volumeFraction, MultiScalarField3D<int>& flag,
MultiTensorField3D<T,3>& normal,
MultiContainerBlock3D& interfaceLists, MultiScalarField3D<T>& curvature,
MultiScalarField3D<T>& outsideDensity )
{
std::vector<MultiBlock3D*> aggregation;
aggregation.push_back(&fluid);
aggregation.push_back(&rhoBar);
aggregation.push_back(&j);
aggregation.push_back(&mass);
aggregation.push_back(&volumeFraction);
aggregation.push_back(&flag);
aggregation.push_back(&normal);
aggregation.push_back(&interfaceLists);
aggregation.push_back(&curvature);
aggregation.push_back(&outsideDensity);
return aggregation;
}
/// Data structure for holding lists of cells along the free surface in an AtomicContainerBlock.
template< typename T,template<typename U> class Descriptor>
struct InterfaceLists : public ContainerBlockData {
typedef Array<plint,Descriptor<T>::d> Node;
/// Holds all nodes which have excess mass from interface->fluid conversion.
std::map<Node,T> filledMassExcess;
/// Holds all nodes which have excess mass from interface->empty conversion.
std::map<Node,T> emptiedMassExcess;
/// Holds all nodes that need to change status from interface to fluid.
std::set<Node> interfaceToFluid;
/// Holds all nodes that need to change status from interface to empty.
std::set<Node> interfaceToEmpty;
/// Holds all nodes that need to change status from empty to interface.
std::set<Node> emptyToInterface;
virtual InterfaceLists<T,Descriptor>* clone() const {
return new InterfaceLists<T,Descriptor>(*this);
}
};
/// A wrapper offering convenient access to the free-surface data provided to
/// data processors. Avoids verbous casting, asserting, etc.
template<typename T,template<typename U> class Descriptor>
class FreeSurfaceProcessorParam3D {
public:
typedef typename InterfaceLists<T,Descriptor>::Node Node;
FreeSurfaceProcessorParam3D(std::vector<AtomicBlock3D*>& atomicBlocks)
{
PLB_ASSERT(atomicBlocks.size() >= 10);
fluid_ = dynamic_cast<BlockLattice3D<T,Descriptor>*>(atomicBlocks[0]);
PLB_ASSERT(fluid_);
rhoBar_ = dynamic_cast<ScalarField3D<T>*>(atomicBlocks[1]);
PLB_ASSERT(rhoBar_);
j_ = dynamic_cast<TensorField3D<T,3>*>(atomicBlocks[2]);
PLB_ASSERT(j_);
mass_ = dynamic_cast<ScalarField3D<T>*>(atomicBlocks[3]);
PLB_ASSERT(mass_);
volumeFraction_ = dynamic_cast<ScalarField3D<T>*>(atomicBlocks[4]);
PLB_ASSERT(volumeFraction_);
flag_ = dynamic_cast<ScalarField3D<int>*>(atomicBlocks[5]);
PLB_ASSERT(flag_);
normal_ = dynamic_cast<TensorField3D<T,3>*>(atomicBlocks[6]);
PLB_ASSERT(normal_);
containerInterfaceLists_ = dynamic_cast<AtomicContainerBlock3D*>(atomicBlocks[7]);
PLB_ASSERT(containerInterfaceLists_);
interfaceLists_ = dynamic_cast<InterfaceLists<T,Descriptor>*>(containerInterfaceLists_->getData());
//PLB_ASSERT(interfaceLists_);
//Put the assertion at the usage of interfaceLists, so we can still work with both freeSurfaceProcessorParam and twoPhaseProcessorParam.
curvature_ = dynamic_cast<ScalarField3D<T>*>(atomicBlocks[8]);
PLB_ASSERT(curvature_);
outsideDensity_ = dynamic_cast<ScalarField3D<T>*>(atomicBlocks[9]);
PLB_ASSERT(outsideDensity_);
absoluteOffset = fluid_->getLocation();
relativeOffsetRhoBar = computeRelativeDisplacement(*fluid_,*rhoBar_);
relativeOffsetJ = computeRelativeDisplacement(*fluid_,*j_);
relativeOffsetMass = computeRelativeDisplacement(*fluid_,*mass_);
relativeOffsetVF = computeRelativeDisplacement(*fluid_,*volumeFraction_);
relativeOffsetFS = computeRelativeDisplacement(*fluid_,*flag_);
relativeOffsetNormal = computeRelativeDisplacement(*fluid_,*normal_);
relativeOffsetC = computeRelativeDisplacement(*fluid_,*curvature_);
relativeOffsetOD = computeRelativeDisplacement(*fluid_,*outsideDensity_);
}
Cell<T,Descriptor>& cell(plint iX, plint iY, plint iZ) { return fluid_->get(iX,iY,iZ); }
T& mass(plint iX, plint iY, plint iZ) {
return mass_->get(iX+relativeOffsetMass.x,iY+relativeOffsetMass.y,iZ+relativeOffsetMass.z);
}
T& volumeFraction(plint iX, plint iY, plint iZ) {
return volumeFraction_->get(iX+relativeOffsetVF.x,iY+relativeOffsetVF.y,iZ+relativeOffsetVF.z);
}
T& curvature(plint iX, plint iY, plint iZ) {
return curvature_->get(iX+relativeOffsetC.x,iY+relativeOffsetC.y,iZ+relativeOffsetC.z);
}
T& outsideDensity(plint iX, plint iY, plint iZ) {
return outsideDensity_->get(iX+relativeOffsetOD.x,iY+relativeOffsetOD.y,iZ+relativeOffsetOD.z);
}
int& flag(plint iX, plint iY, plint iZ) {
return flag_->get(iX+relativeOffsetFS.x,iY+relativeOffsetFS.y,iZ+relativeOffsetFS.z);
}
void setForce(plint iX, plint iY, plint iZ, Array<T,3> const& force) {
force.to_cArray(cell(iX,iY,iZ).getExternal(forceOffset));
}
Array<T,3> getForce(plint iX, plint iY, plint iZ) {
Array<T,3> force; force.from_cArray(cell(iX,iY,iZ).getExternal(forceOffset));
return force;
}
void setMomentum(plint iX, plint iY, plint iZ, Array<T,3> const& momentum) {
j_->get(iX+relativeOffsetJ.x,iY+relativeOffsetJ.y,iZ+relativeOffsetJ.z) = momentum;
}
Array<T,3> getMomentum(plint iX, plint iY, plint iZ) {
return j_->get(iX+relativeOffsetJ.x,iY+relativeOffsetJ.y,iZ+relativeOffsetJ.z);
}
T getDensity(plint iX, plint iY, plint iZ) {
return Descriptor<T>::fullRho (
rhoBar_->get(iX+relativeOffsetRhoBar.x, iY+relativeOffsetRhoBar.y, iZ+relativeOffsetRhoBar.z) );
}
void setDensity(plint iX, plint iY, plint iZ, T rho) {
rhoBar_->get(iX+relativeOffsetRhoBar.x, iY+relativeOffsetRhoBar.y, iZ+relativeOffsetRhoBar.z)
= Descriptor<T>::rhoBar(rho);
}
void setNormal(plint iX, plint iY, plint iZ, Array<T,3> const& normal) {
normal_->get(iX+relativeOffsetNormal.x,iY+relativeOffsetNormal.y,iZ+relativeOffsetNormal.z) = normal;
}
Array<T,3> getNormal(plint iX, plint iY, plint iZ) {
return normal_->get(iX+relativeOffsetNormal.x,iY+relativeOffsetNormal.y,iZ+relativeOffsetNormal.z);
}
void attributeDynamics(plint iX, plint iY, plint iZ, Dynamics<T,Descriptor>* dynamics) {
fluid_->attributeDynamics(iX,iY,iZ, dynamics);
}
bool isBoundary(plint iX, plint iY, plint iZ) {
return cell(iX, iY, iZ).getDynamics().isBoundary();
}
void addToTotalMass(T addedTotalMass) {
fluid_->getInternalStatistics().gatherSum(0, addedTotalMass);
}
void addToLostMass(T addedLostMass) {
fluid_->getInternalStatistics().gatherSum(1, addedLostMass);
}
void addToInterfaceCells(plint addedInterfaceCells) {
fluid_->getInternalStatistics().gatherIntSum(0, addedInterfaceCells);
}
T getSumMassMatrix() const {
return fluid_->getInternalStatistics().getSum(0);
}
T getSumLostMass() const {
return fluid_->getInternalStatistics().getSum(1);
}
T getTotalMass() const {
return getSumMassMatrix() + getSumLostMass();
}
plint getNumInterfaceCells() const {
return fluid_->getInternalStatistics().getIntSum(0);
}
T smoothVolumeFraction(plint iX, plint iY, plint iZ)
{
using namespace twoPhaseFlag;
if (flag_->get(iX+relativeOffsetFS.x,iY+relativeOffsetFS.y,iZ+relativeOffsetFS.z) == wall) {
return volumeFraction_->get(iX+relativeOffsetVF.x,iY+relativeOffsetVF.y,iZ+relativeOffsetVF.z);
}
T val = 0.0;
int n = 0;
for (int i = -1; i < 2; i++) {
plint nextX = iX + i;
for (int j = -1; j < 2; j++) {
plint nextY = iY + j;
for (int k = -1; k < 2; k++) {
plint nextZ = iZ + k;
if (!(i == 0 && j == 0 && k == 0) &&
flag_->get(nextX+relativeOffsetFS.x,nextY+relativeOffsetFS.y,nextZ+relativeOffsetFS.z) != wall) {
n++;
val += volumeFraction_->get(nextX+relativeOffsetVF.x,nextY+relativeOffsetVF.y,nextZ+relativeOffsetVF.z);
}
}
}
}
if (n != 0) {
val /= (T) n;
} else {
val = volumeFraction_->get(iX+relativeOffsetVF.x,iY+relativeOffsetVF.y,iZ+relativeOffsetVF.z);
}
return val;
}
std::map<Node,T>& filledMassExcess() { PLB_ASSERT(interfaceLists_); return interfaceLists_ -> filledMassExcess; }
std::map<Node,T>& emptiedMassExcess() { PLB_ASSERT(interfaceLists_); return interfaceLists_ -> emptiedMassExcess; }
std::set<Node>& interfaceToFluid() { PLB_ASSERT(interfaceLists_); return interfaceLists_ -> interfaceToFluid; }
std::set<Node>& interfaceToEmpty() { PLB_ASSERT(interfaceLists_); return interfaceLists_ -> interfaceToEmpty; }
std::set<Node>& emptyToInterface() { PLB_ASSERT(interfaceLists_); return interfaceLists_ -> emptyToInterface; }
Dot3D const& absOffset() const { return absoluteOffset; }
Box3D getBoundingBox() const { return volumeFraction_->getBoundingBox(); }
private:
BlockLattice3D<T,Descriptor>* fluid_;
ScalarField3D<T>* rhoBar_;
TensorField3D<T,3>* j_;
ScalarField3D<T>* mass_;
ScalarField3D<T>* volumeFraction_;
ScalarField3D<int>* flag_;
TensorField3D<T,3>* normal_;
AtomicContainerBlock3D* containerInterfaceLists_;
InterfaceLists<T,Descriptor>* interfaceLists_;
ScalarField3D<T>* curvature_;
ScalarField3D<T>* outsideDensity_;
Dot3D absoluteOffset, relativeOffsetRhoBar, relativeOffsetJ, relativeOffsetMass,
relativeOffsetVF, relativeOffsetFS, relativeOffsetNormal, relativeOffsetC,
relativeOffsetOD;
static const int forceOffset = Descriptor<T>::ExternalField::forceBeginsAt;
};
} // namespace plb
#endif // FREE_SURFACE_UTIL_3D_H
|