/usr/include/palabos/multiGrid/gridRefinement.h is in libplb-dev 1.5~r1+repack1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 | /* This file is part of the Palabos library.
*
* Copyright (C) 2011-2015 FlowKit Sarl
* Route d'Oron 2
* 1010 Lausanne, Switzerland
* E-mail contact: contact@flowkit.com
*
* The most recent release of Palabos can be downloaded at
* <http://www.palabos.org/>
*
* The library Palabos is free software: you can redistribute it and/or
* modify it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of the
* License, or (at your option) any later version.
*
* The library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/* Main author: Daniel Lagrava
**/
/** \file
* Coupling between grids of different refinement level -- header file.
*/
#ifndef GRID_REFINEMENT_H
#define GRID_REFINEMENT_H
#include "core/globalDefs.h"
#include "core/cell.h"
#include <vector>
namespace plb {
/// Computation of Lagrange polynomial in 2D for the interpolation
template<typename T>
T interpolateValue(std::vector<T> x, std::vector<T> y);
/// A policy for scaling the data between the cells of a coarse and a fine grid.
template<typename T, template<typename U> class Descriptor>
class RescaleEngine {
public:
virtual ~RescaleEngine() { }
/// Decompose the values of a coarse cell, and rescale them to the units of a fine cell.
virtual void scaleCoarseFine( Cell<T,Descriptor> const& coarseCell,
std::vector<T>& decomposedFineValues) const =0;
/// Decompose the values of a fine cell, and rescale them to the units of a coarse cell.
virtual void scaleFineCoarse( Cell<T,Descriptor> const& fineCell,
std::vector<T>& decomposedCoarseValues ) const =0;
/// Recompose the values into the variables of a cell, without further rescaling.
virtual void recompose( Cell<T,Descriptor>& cell, std::vector<T> const& decomposedValues ) const =0;
/// Get the order (wrt the Chapman-Enskog expansion) at which decomposition is performed.
virtual plint getDecompositionOrder() const =0;
/// Get a clone of this object.
virtual RescaleEngine<T,Descriptor>* clone() const =0;
};
/// Rescale values in a convective regime, dx=dt, with a factor 2 between coarse and fine grid.
template<typename T, template<typename U> class Descriptor>
class ConvectiveRescaleEngine: public RescaleEngine<T,Descriptor> {
public:
ConvectiveRescaleEngine(plint order_);
/// Decompose the values of a coarse cell, and rescale them to the units of a fine cell.
virtual void scaleCoarseFine( Cell<T,Descriptor> const& coarseCell,
std::vector<T>& decomposedFineValues ) const;
/// Decompose the values of a fine cell, and rescale them to the units of a coarse cell.
virtual void scaleFineCoarse( Cell<T,Descriptor> const& fineCell,
std::vector<T>& decomposedCoarseValues ) const;
/// Recompose the values into the variables of a cell, without further rescaling.
virtual void recompose( Cell<T,Descriptor>& cell, std::vector<T> const& decomposedValues ) const;
/// Get the order (wrt the Chapman-Enskog expansion) at which decomposition is performed.
virtual plint getDecompositionOrder() const;
/// Get a clone of this object.
virtual ConvectiveRescaleEngine<T,Descriptor>* clone() const;
private:
plint order; //< Order of the decomposition wrt to the Chapman-Enskog expansion.
static const T toFine_xDxInv; // 1/xDx for coarse->fine
static const T toFine_xDt; // xDt for coarse->fine
static const T toCoarse_xDxInv; // 1/xDx for fine->coarse
static const T toCoarse_xDt; // xDt for fine->coarse
};
/// Perform no rescaling.
template<typename T, template<typename U> class Descriptor>
class NoScalingEngine: public RescaleEngine<T,Descriptor> {
public:
NoScalingEngine(plint order_);
/// Decompose the values of a coarse cell, and rescale them to the units of a fine cell.
virtual void scaleCoarseFine( Cell<T,Descriptor> const& coarseCell,
std::vector<T>& decomposedFineValues ) const;
/// Decompose the values of a fine cell, and rescale them to the units of a coarse cell.
virtual void scaleFineCoarse( Cell<T,Descriptor> const& fineCell,
std::vector<T>& decomposedCoarseValues ) const;
/// Recompose the values into the variables of a cell, without further rescaling.
virtual void recompose( Cell<T,Descriptor>& cell, std::vector<T> const& decomposedValues ) const;
/// Get the order (wrt the Chapman-Enskog expansion) at which decomposition is performed.
virtual plint getDecompositionOrder() const;
/// Get a clone of this object.
virtual NoScalingEngine<T,Descriptor>* clone() const;
private:
plint order;
};
template<typename T>
void linearInterpolation(std::vector<T>& pop1, std::vector<T>& pop2, std::vector<T>& decomposedValues);
template<typename T>
void cubicCenteredInterpolation(std::vector<T>& pop1, std::vector<T>& pop2,
std::vector<T>& pop3, std::vector<T>& pop4,
std::vector<T>& decomposedValues );
template<typename T>
void quadraticNonCenteredInterpolation(std::vector<T>& pop1, std::vector<T>& pop2,
std::vector<T>& pop3, std::vector<T>& decomposedValues );
} // namespace plb
#endif // GRID_REFINEMENT_H
|