/usr/include/palabos/latticeBoltzmann/offEquilibriumTemplates.h is in libplb-dev 1.5~r1+repack1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 | /* This file is part of the Palabos library.
*
* Copyright (C) 2011-2015 FlowKit Sarl
* Route d'Oron 2
* 1010 Lausanne, Switzerland
* E-mail contact: contact@flowkit.com
*
* The most recent release of Palabos can be downloaded at
* <http://www.palabos.org/>
*
* The library Palabos is free software: you can redistribute it and/or
* modify it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of the
* License, or (at your option) any later version.
*
* The library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/** \file
* Specialized helper functions for advanced techniques around LB
* implementations. They implement the physics of the first-order terms
* of the Chapman-Enskog expansion and are useful whenever a transition
* from hydrodynamical variables (rho, u) to kinetic variables (f) si to
* be implemented. Additionally, they are used for the implementation of
* the stable RLB dynamics.
*
* This file is all about efficiency. The generic
* template code is specialized for commonly used Lattices, so that a
* maximum performance can be taken out of each case.
*/
#ifndef OFF_EQUILIBRIUM_TEMPLATES_H
#define OFF_EQUILIBRIUM_TEMPLATES_H
#include "core/globalDefs.h"
#include "core/cell.h"
#include "core/util.h"
#include "hermitePolynomialsTemplates.h"
#include "geometricOperationTemplates.h"
namespace plb {
template<typename T, class Descriptor> struct offEquilibriumTemplatesImpl;
/// General first-order functions
template<typename T, template<typename U> class Descriptor>
struct offEquilibriumTemplates {
/// Compute off-equilibrium part of the f's from the stress tensor Pi.
/** Implements the following formula (with Einstein index contraction):
* /f[ f_i^{neq} = t_i / (2 c_s^4) *
* (c_{ia} c_{ib} - c_s^2 \delta_{ab}) \Pi_{ab} /f]
* By Pi we mean the tensor computed from the off-equilibrium functions:
* /f[ \Pi = \sum c_i c_i f_i^{neq}
* = \sum c_i c_i f_i - \rho u u - c_s^2 \rho\ Id /f]
*/
static T fromPiToFneq(plint iPop, Array<T,SymmetricTensor<T,Descriptor>::n> const& pi) {
return offEquilibriumTemplatesImpl<T,typename Descriptor<T>::BaseDescriptor>
::fromPiToFneq(iPop, pi);
}
static T fromPiAndQtoFneq(plint iPop, Array<T,SymmetricTensor<T,Descriptor>::n> const& pi,
Array<T,SymmetricRankThreeTensor<T,Descriptor>::n> const& q) {
return offEquilibriumTemplatesImpl<T,typename Descriptor<T>::BaseDescriptor>
::fromPiAndQtoFneq(iPop, pi, q);
}
/// Compute off-equilibrium part of the f's from the strain rate tensor S.
/** Implements the following formula:
* /f[ f_i^{neq} = - t_i / (c_s^2\omega) *
* (c_{ia} c_{ib} - c_s^2 \delta_{ab}) S_{ab} /f]
* By S we mean the tensor computed from the velocity gradients:
* /f[ S_{\alpha\beta} = 1/2 (
* \partial_\alpha(\rho u_\beta) + \partial_\beta(\rho u_\alpha) ) /f]
*/
static T fromStrainToFneq(plint iPop, Array<T,SymmetricTensor<T,Descriptor>::n> const& S, T density, T omega) {
return offEquilibriumTemplatesImpl<T,typename Descriptor<T>::BaseDescriptor>
::fromStrainToFneq(iPop, S, density, omega);
}
}; // struct offEquilibriumTemplates
template<typename T, class Descriptor>
struct offEquilibriumTemplatesImpl {
static T fromPiToFneq (
plint iPop, Array<T,SymmetricTensorImpl<T,Descriptor::d>::n> const& PiNeq )
{
typedef Descriptor L;
T fNeq = T();
plint iPi = 0;
// Iterate only over superior triangle + diagonal, and add
// the elements under the diagonal by symmetry
for (int iAlpha=0; iAlpha<L::d; ++iAlpha) {
// Treat diagonal term first
fNeq += PiNeq[iPi] * (L::c[iPop][iAlpha]*L::c[iPop][iAlpha]
- L::cs2);
++iPi;
// Then, treat off-diagonal terms
for (int iBeta=iAlpha+1; iBeta<L::d; ++iBeta) {
// Multiply off-diagonal elements by 2 because
// the Q tensor is symmetric
fNeq += PiNeq[iPi]
* (T)2 * L::c[iPop][iAlpha]*L::c[iPop][iBeta];
++iPi;
}
}
fNeq *= L::t[iPop] * L::invCs2 * L::invCs2 / (T)2;
return fNeq;
}
static T fromPiAndQtoFneq (
plint iPop, Array<T,SymmetricTensorImpl<T,Descriptor::d>::n> const& PiNeq,
Array<T,SymmetricRankThreeTensorImpl<T,Descriptor::d>::n> const& Q)
{
typedef Descriptor L;
Array<T,SymmetricTensorImpl<T,Descriptor::d>::n> H2 =
HermiteTemplateImpl<T,Descriptor,Descriptor::d>::order2(iPop);
Array<T,SymmetricRankThreeTensorImpl<T,Descriptor::d>::n> H3 =
HermiteTemplateImpl<T,Descriptor,Descriptor::d>::order3(iPop);
T factor = L::t[iPop] * L::invCs2 * L::invCs2 / (T)2;
T fNeqPi = factor * SymmetricTensorImpl<T,Descriptor::d>::contractIndexes(H2,PiNeq);
T fNeqQ = factor * L::invCs2 / (T)3 *
SymmetricRankThreeTensorImpl<T,Descriptor::d>::contractIndexes(H3,Q);
return fNeqPi + fNeqQ;
}
/// Compute off-equilibrium part of the f's from the strain rate tensor S.
/** Implements the following formula:
* /f[ f_i^{neq} = - t_i / (c_s^2\omega) *
* (c_{ia} c_{ib} - c_s^2 \delta_{ab}) S_{ab} /f]
* By S we mean the tensor computed from the velocity gradients:
* /f[ S_{\alpha\beta} = 1/2 (
* \partial_\alpha(\rho u_\beta) + \partial_\beta(\rho u_\alpha) ) /f]
*/
static T fromStrainToFneq (
plint iPop, Array<T,SymmetricTensorImpl<T,Descriptor::d>::n> const& S, T density, T omega)
{
typedef Descriptor L;
T fNeq = fromPiToFneq(iPop,S) * (-(T)2 * density * L::cs2 / omega);
return fNeq;
}
}; // struct offEquilibriumTemplates
} // namespace plb
#include "latticeBoltzmann/offEquilibriumTemplates2D.h"
#include "latticeBoltzmann/offEquilibriumTemplates3D.h"
#endif
|