This file is indexed.

/usr/include/palabos/latticeBoltzmann/offEquilibriumTemplates.h is in libplb-dev 1.5~r1+repack1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
/* This file is part of the Palabos library.
 *
 * Copyright (C) 2011-2015 FlowKit Sarl
 * Route d'Oron 2
 * 1010 Lausanne, Switzerland
 * E-mail contact: contact@flowkit.com
 *
 * The most recent release of Palabos can be downloaded at 
 * <http://www.palabos.org/>
 *
 * The library Palabos is free software: you can redistribute it and/or
 * modify it under the terms of the GNU Affero General Public License as
 * published by the Free Software Foundation, either version 3 of the
 * License, or (at your option) any later version.
 *
 * The library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Affero General Public License for more details.
 *
 * You should have received a copy of the GNU Affero General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
*/

/** \file
 * Specialized helper functions for advanced techniques around LB
 * implementations. They implement the physics of the first-order terms
 * of the Chapman-Enskog expansion and are useful whenever a transition 
 * from hydrodynamical variables (rho, u) to kinetic variables (f) si to
 * be implemented. Additionally, they are used for the implementation of
 * the stable RLB dynamics.
 *
 * This file is all about efficiency. The generic
 * template code is specialized for commonly used Lattices, so that a
 * maximum performance can be taken out of each case.
 */
#ifndef OFF_EQUILIBRIUM_TEMPLATES_H
#define OFF_EQUILIBRIUM_TEMPLATES_H

#include "core/globalDefs.h"
#include "core/cell.h"
#include "core/util.h"
#include "hermitePolynomialsTemplates.h"
#include "geometricOperationTemplates.h"

namespace plb {

template<typename T, class Descriptor> struct offEquilibriumTemplatesImpl;

/// General first-order functions
template<typename T, template<typename U> class Descriptor>
struct offEquilibriumTemplates {

/// Compute off-equilibrium part of the f's from the stress tensor Pi.
/** Implements the following formula (with Einstein index contraction):
 * /f[ f_i^{neq} = t_i / (2 c_s^4) *
 *                 (c_{ia} c_{ib} - c_s^2 \delta_{ab}) \Pi_{ab} /f]
 * By Pi we mean the tensor computed from the off-equilibrium functions:
 * /f[ \Pi = \sum c_i c_i f_i^{neq}
 *         = \sum c_i c_i f_i - \rho u u - c_s^2 \rho\ Id /f]
 */
static T fromPiToFneq(plint iPop, Array<T,SymmetricTensor<T,Descriptor>::n> const& pi) {
    return offEquilibriumTemplatesImpl<T,typename Descriptor<T>::BaseDescriptor>
        ::fromPiToFneq(iPop, pi);
}

static T fromPiAndQtoFneq(plint iPop, Array<T,SymmetricTensor<T,Descriptor>::n> const& pi, 
                          Array<T,SymmetricRankThreeTensor<T,Descriptor>::n> const& q) {
    return offEquilibriumTemplatesImpl<T,typename Descriptor<T>::BaseDescriptor>
        ::fromPiAndQtoFneq(iPop, pi, q);
}

/// Compute off-equilibrium part of the f's from the strain rate tensor S.
/** Implements the following formula:
 * /f[ f_i^{neq} = - t_i / (c_s^2\omega) *
 *                 (c_{ia} c_{ib} - c_s^2 \delta_{ab}) S_{ab} /f]
 * By S we mean the tensor computed from the velocity gradients:
 * /f[ S_{\alpha\beta} = 1/2 (
 *     \partial_\alpha(\rho u_\beta) + \partial_\beta(\rho u_\alpha) ) /f]
 */
static T fromStrainToFneq(plint iPop, Array<T,SymmetricTensor<T,Descriptor>::n> const& S, T density, T omega) {
    return offEquilibriumTemplatesImpl<T,typename Descriptor<T>::BaseDescriptor>
        ::fromStrainToFneq(iPop, S, density, omega);
}

};  // struct offEquilibriumTemplates

template<typename T, class Descriptor>
struct offEquilibriumTemplatesImpl {

static T fromPiToFneq (
    plint iPop, Array<T,SymmetricTensorImpl<T,Descriptor::d>::n> const& PiNeq )
{
    typedef Descriptor L;
    T fNeq = T();
    plint iPi = 0;
    // Iterate only over superior triangle + diagonal, and add
    // the elements under the diagonal by symmetry
    for (int iAlpha=0; iAlpha<L::d; ++iAlpha) {
        // Treat diagonal term first
        fNeq += PiNeq[iPi] * (L::c[iPop][iAlpha]*L::c[iPop][iAlpha]
                              - L::cs2);
        ++iPi;
        // Then, treat off-diagonal terms
        for (int iBeta=iAlpha+1; iBeta<L::d; ++iBeta) {
            // Multiply off-diagonal elements by 2 because
            // the Q tensor is symmetric
            fNeq += PiNeq[iPi]
                      * (T)2 * L::c[iPop][iAlpha]*L::c[iPop][iBeta];
            ++iPi;
        }
    }
    fNeq *= L::t[iPop] * L::invCs2 * L::invCs2 / (T)2;
    return fNeq;
}

static T fromPiAndQtoFneq (
    plint iPop, Array<T,SymmetricTensorImpl<T,Descriptor::d>::n> const& PiNeq,
    Array<T,SymmetricRankThreeTensorImpl<T,Descriptor::d>::n> const& Q)
{
    typedef Descriptor L;
    
    Array<T,SymmetricTensorImpl<T,Descriptor::d>::n> H2 = 
        HermiteTemplateImpl<T,Descriptor,Descriptor::d>::order2(iPop);
    Array<T,SymmetricRankThreeTensorImpl<T,Descriptor::d>::n> H3 = 
        HermiteTemplateImpl<T,Descriptor,Descriptor::d>::order3(iPop);
        
    T factor = L::t[iPop] * L::invCs2 * L::invCs2 / (T)2;
    
    T fNeqPi = factor * SymmetricTensorImpl<T,Descriptor::d>::contractIndexes(H2,PiNeq);
    T fNeqQ = factor * L::invCs2 / (T)3 * 
                SymmetricRankThreeTensorImpl<T,Descriptor::d>::contractIndexes(H3,Q);
    
    return fNeqPi + fNeqQ;
}

/// Compute off-equilibrium part of the f's from the strain rate tensor S.
/** Implements the following formula:
 * /f[ f_i^{neq} = - t_i / (c_s^2\omega) *
 *                 (c_{ia} c_{ib} - c_s^2 \delta_{ab}) S_{ab} /f]
 * By S we mean the tensor computed from the velocity gradients:
 * /f[ S_{\alpha\beta} = 1/2 (
 *     \partial_\alpha(\rho u_\beta) + \partial_\beta(\rho u_\alpha) ) /f]
 */
static T fromStrainToFneq (
    plint iPop, Array<T,SymmetricTensorImpl<T,Descriptor::d>::n> const& S, T density, T omega)
{
    typedef Descriptor L;
    T fNeq = fromPiToFneq(iPop,S) * (-(T)2 * density * L::cs2 / omega);
    return fNeq;
}

};  // struct offEquilibriumTemplates

}  // namespace plb

#include "latticeBoltzmann/offEquilibriumTemplates2D.h"
#include "latticeBoltzmann/offEquilibriumTemplates3D.h"

#endif