This file is indexed.

/usr/include/palabos/latticeBoltzmann/momentTemplates.h is in libplb-dev 1.5~r1+repack1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
/* This file is part of the Palabos library.
 *
 * Copyright (C) 2011-2015 FlowKit Sarl
 * Route d'Oron 2
 * 1010 Lausanne, Switzerland
 * E-mail contact: contact@flowkit.com
 *
 * The most recent release of Palabos can be downloaded at 
 * <http://www.palabos.org/>
 *
 * The library Palabos is free software: you can redistribute it and/or
 * modify it under the terms of the GNU Affero General Public License as
 * published by the Free Software Foundation, either version 3 of the
 * License, or (at your option) any later version.
 *
 * The library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Affero General Public License for more details.
 *
 * You should have received a copy of the GNU Affero General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
*/

/** \file
 * Helper functions for the computation of velocity moments for the f's.
 * This file is all about efficiency. The generic template code is specialized
 * for commonly used Lattices, so that a maximum performance can be taken out
 * of each case.
 */
#ifndef MOMENT_TEMPLATES_H
#define MOMENT_TEMPLATES_H

#include "core/globalDefs.h"
#include "core/cell.h"
#include "core/util.h"
#include "latticeBoltzmann/geometricOperationTemplates.h"
#include "latticeBoltzmann/roundOffPolicy.h"

namespace plb {

template<typename T, class Descriptor> struct momentTemplatesImpl;

// This structure forwards the calls to the appropriate helper class
template<typename T, template<typename U> class Descriptor>
struct momentTemplates {

static T get_rhoBar(Cell<T,Descriptor> const& cell) {
    return momentTemplatesImpl<T,typename Descriptor<T>::BaseDescriptor>
        ::get_rhoBar(cell.getRawPopulations());
}

static void get_j(Cell<T,Descriptor> const& cell, Array<T,Descriptor<T>::d>& j ) {
    momentTemplatesImpl<T,typename Descriptor<T>::BaseDescriptor>
        ::get_j(cell.getRawPopulations(), j);
}

static T get_eBar(Cell<T,Descriptor> const& cell) {
    return momentTemplatesImpl<T,typename Descriptor<T>::BaseDescriptor>
        ::get_eBar(cell.getRawPopulations());
}

static void get_rhoBar_j(Cell<T,Descriptor> const& cell, T& rhoBar, Array<T,Descriptor<T>::d>& j ) {
    momentTemplatesImpl<T,typename Descriptor<T>::BaseDescriptor>
        ::get_rhoBar_j(cell.getRawPopulations(), rhoBar, j);
}

static void get_rhoBar_j_thetaBar(Cell<T,Descriptor> const& cell, T& rhoBar, Array<T,Descriptor<T>::d>& j, T &thetaBar ) {
    momentTemplatesImpl<T,typename Descriptor<T>::BaseDescriptor>
    ::get_rhoBar_j_thetaBar(cell.getRawPopulations(), rhoBar, j, thetaBar);
}

static T compute_rho(Cell<T,Descriptor> const& cell) {
    return momentTemplatesImpl<T,typename Descriptor<T>::BaseDescriptor>
        ::compute_rho(cell.getRawPopulations());
}

/// Get order-1 moment of f's, divided by rho ("lattice-boltzmann-velocity", or "uLb")
/** In many cases, such as the plain BGK model, this is equal to to physical
 * velocity, but in other cases not. In presence of a body force g for example,
 * the velocity is uLb + g/2.
 **/
static void compute_uLb(Cell<T,Descriptor> const& cell, Array<T,Descriptor<T>::d>& uLb ) {
    momentTemplatesImpl<T,typename Descriptor<T>::BaseDescriptor>
        ::compute_uLb(cell.getRawPopulations(), uLb);
}

static void compute_rho_uLb(Cell<T,Descriptor> const& cell, T& rho, Array<T,Descriptor<T>::d>& uLb ) {
    momentTemplatesImpl<T,typename Descriptor<T>::BaseDescriptor>
        ::compute_rho_uLb(cell.getRawPopulations(), rho, uLb);
}

static T compute_e(Cell<T,Descriptor> const& cell) {
    return momentTemplatesImpl<T,typename Descriptor<T>::BaseDescriptor>
        ::compute_e(cell.getRawPopulations());
}

static T compute_rhoThetaBar(Cell<T,Descriptor> const& cell, T rhoBar, T jSqr) {
    return momentTemplatesImpl<T,typename Descriptor<T>::BaseDescriptor>
        ::compute_rhoThetaBar(cell.getRawPopulations(), rhoBar, jSqr);
}

static void compute_rho_rhoThetaBar(Cell<T,Descriptor> const& cell, T& rho, T& rhoThetaBar) {
    momentTemplatesImpl<T,typename Descriptor<T>::BaseDescriptor>
        ::compute_rho_rhoThetaBar(cell.getRawPopulations(), rho, rhoThetaBar);
}

static T compute_theta(Cell<T,Descriptor> const& cell, T rhoBar, T jSqr) {
    return momentTemplatesImpl<T,typename Descriptor<T>::BaseDescriptor>
        ::compute_theta(cell.getRawPopulations(), rhoBar, jSqr);
}

static T compute_rhoEpsilon(Cell<T,Descriptor> const& cell, T rhoBar, T jSqr) {
    return momentTemplatesImpl<T,typename Descriptor<T>::BaseDescriptor>
        ::compute_rhoEpsilon(cell.getRawPopulations(), rhoBar, jSqr);
}

static void compute_PiNeq(Cell<T,Descriptor> const& cell, T rhoBar, Array<T,Descriptor<T>::d> const& j,
                          Array<T,SymmetricTensor<T,Descriptor>::n>& PiNeq )
{
    momentTemplatesImpl<T,typename Descriptor<T>::BaseDescriptor>
        ::compute_PiNeq(cell.getRawPopulations(), rhoBar, j, PiNeq, Descriptor<T>::invRho(rhoBar));
}

static void compute_PiNeq(Cell<T,Descriptor> const& cell, T rhoBar, Array<T,Descriptor<T>::d> const& j,
                          Array<T,SymmetricTensor<T,Descriptor>::n>& PiNeq, T invRho )
{
    momentTemplatesImpl<T,typename Descriptor<T>::BaseDescriptor>
        ::compute_PiNeq(cell.getRawPopulations(), rhoBar, j, PiNeq, invRho);
}

static void compute_thermal_PiNeq(Cell<T,Descriptor> const& cell, T rhoBar, T thetaBar,
                                  Array<T,Descriptor<T>::d> const& j,
                                  Array<T,SymmetricTensor<T,Descriptor>::n>& PiNeq )
{
    momentTemplatesImpl<T,typename Descriptor<T>::BaseDescriptor>
        ::compute_thermal_PiNeq(cell.getRawPopulations(), rhoBar, thetaBar, j, PiNeq);
}

static void compute_rhoBar_j_PiNeq(Cell<T,Descriptor> const& cell, T& rhoBar, Array<T,Descriptor<T>::d>& j,
                                   Array<T,SymmetricTensor<T,Descriptor>::n>& PiNeq )
{
    momentTemplatesImpl<T,typename Descriptor<T>::BaseDescriptor>
        ::compute_rhoBar_j_PiNeq(cell.getRawPopulations(), rhoBar, j, PiNeq);
}

static void compute_rhoBar_j_PiNeq(Cell<T,Descriptor> const& cell, T& rhoBar, Array<T,Descriptor<T>::d>& j,
                                   Array<T,SymmetricTensor<T,Descriptor>::n>& PiNeq, T invRho )
{
    momentTemplatesImpl<T,typename Descriptor<T>::BaseDescriptor>
        ::compute_rhoBar_j_PiNeq(cell.getRawPopulations(), rhoBar, j, PiNeq, invRho);
}

static void compute_rhoBar_thetaBar_j_PiNeq(Cell<T,Descriptor> const& cell, T& rhoBar, T& thetaBar,
                                            Array<T,Descriptor<T>::d> & j,
                                            Array<T,SymmetricTensor<T,Descriptor>::n>& PiNeq )
{
    momentTemplatesImpl<T,typename Descriptor<T>::BaseDescriptor>
        ::compute_rhoBar_thetaBar_j_PiNeq(cell.getRawPopulations(), rhoBar, thetaBar, j, PiNeq);
}
                                                 
static void compute_rhoBar_thetaBar_j_PiNeq_qNeq(Cell<T,Descriptor> const& cell, T& rhoBar, T& thetaBar,
                                                 Array<T,Descriptor<T>::d> & j,
                                                 Array<T,SymmetricTensor<T,Descriptor>::n>& PiNeq,
                                                 Array<T,SymmetricRankThreeTensor<T,Descriptor>::n>& qNeq)
{
    momentTemplatesImpl<T,typename Descriptor<T>::BaseDescriptor>
        ::compute_rhoBar_thetaBar_j_PiNeq_qNeq(cell.getRawPopulations(), rhoBar, thetaBar, j, PiNeq, qNeq);
}


/// Get local, order-2 moment: sum_i (c_i-uLb)(c_i-uLb) f_i = -rho uLb uLb + sum_i c_i c_i f_i
/** The full stress tensor Pi is equal to P + rho u u. The deviatoric stress tensor sigma
 *  is equal to P - c_s^2 rho I (\sa compute_Pi_neq)
 **/
static void compute_P(Cell<T,Descriptor> const& cell, T rhoBar, Array<T,Descriptor<T>::d> const& j,
                      Array<T,SymmetricTensor<T,Descriptor>::n>& P)
{
    momentTemplatesImpl<T,typename Descriptor<T>::BaseDescriptor>
        ::compute_P(cell.getRawPopulations(), rhoBar, j, P);
}

static void modifyJ(T& cell, Array<T,Descriptor<T>::d> const& newJ) {
    momentTemplatesImpl<T,typename Descriptor<T>::BaseDescriptor>
        ::modifyVelocity(cell.getRawPopulations(), newJ);
}

static void compute_Qneq(Cell<T,Descriptor> const& cell, T rhoBar, Array<T,Descriptor<T>::d> const& j,
                         T thetaBar,
                         Array<T,SymmetricRankThreeTensor<T,Descriptor>::n>& qNeq )
{
    momentTemplatesImpl<T,typename Descriptor<T>::BaseDescriptor>
        ::compute_Qneq(cell.getRawPopulations(), rhoBar, j, thetaBar, qNeq);
}

static void compute_heat_flux(Cell<T,Descriptor> const& cell, T rhoBar, Array<T,Descriptor<T>::d> const& j,
                              T thetaBar,
                              Array<T,Descriptor<T>::d>& q )
{
    momentTemplatesImpl<T,typename Descriptor<T>::BaseDescriptor>
        ::compute_heat_flux(cell.getRawPopulations(), rhoBar, j, thetaBar, q);
}

};  // struct momentTemplates


// This structure forwards the calls to the appropriate helper class
template<typename T, class Descriptor>
struct momentTemplatesImpl {

static T get_rhoBar(Array<T,Descriptor::q> const& f) {
    T rhoBar = f[0];
    for (plint iPop=1; iPop < Descriptor::q; ++iPop) {
        rhoBar += f[iPop];
    }
    return rhoBar;
}

static void get_j(Array<T,Descriptor::q> const& f, Array<T,Descriptor::d>& j ) {
    for (int iD=0; iD < Descriptor::d; ++iD) {
        j[iD] = f[0]*Descriptor::c[0][iD];
    }
    for (plint iPop=1; iPop < Descriptor::q; ++iPop) {
        for (int iD=0; iD < Descriptor::d; ++iD) {
            j[iD] += f[iPop]*Descriptor::c[iPop][iD];
        }
    }
}

static T get_eBar(Array<T,Descriptor::q> const& f) {
    T eBar = f[0] * Descriptor::cNormSqr[0];
    for (plint iPop=1; iPop < Descriptor::q; ++iPop) {
        eBar += f[iPop] * Descriptor::cNormSqr[iPop];
    }
    return eBar;
}

static void get_rhoBar_j(Array<T,Descriptor::q> const& f, T& rhoBar, Array<T,Descriptor::d>& j ) {
    rhoBar = get_rhoBar(f);
    get_j(f, j);
}

static void get_rhoBar_j_thetaBar(Array<T,Descriptor::q> const& f, T& rhoBar, Array<T,Descriptor::d>& j, T &thetaBar ) {
    get_rhoBar_j(f,rhoBar,j);
    T jSqr = VectorTemplateImpl<T,Descriptor::d>::normSqr(j);
    T invRho = Descriptor::invRho(rhoBar);
    thetaBar = compute_rhoThetaBar(f, rhoBar, jSqr) * invRho;
}


static T compute_rho(Array<T,Descriptor::q> const& f) {
    return Descriptor::fullRho(get_rhoBar(f));
}

static void compute_uLb(Array<T,Descriptor::q> const& f, Array<T,Descriptor::d>& uLb ) {
    get_j(f, uLb);
    T invRho = Descriptor::invRho(get_rhoBar(f));
    for (int iD=0; iD < Descriptor::d; ++iD) {
        uLb[iD] *= invRho;
    }
}

static void compute_rho_uLb(Array<T,Descriptor::q> const& f, T& rho, Array<T,Descriptor::d>& uLb ) {
    get_j(f, uLb);
    T rhoBar = get_rhoBar(f);
    T invRho = Descriptor::invRho(rhoBar);
    rho = Descriptor::fullRho(rhoBar);
    for (int iD=0; iD < Descriptor::d; ++iD) {
        uLb[iD] *= invRho;
    }
}

static T compute_e(Array<T,Descriptor::q> const& f) {
    return get_eBar(f) + Descriptor::SkordosFactor() * Descriptor::d * Descriptor::cs2;
}

static T compute_rhoThetaBar(Array<T,Descriptor::q> const& f, T rhoBar, T jSqr) {
    T invRho = Descriptor::invRho(rhoBar);
    return Descriptor::invCs2 * Descriptor::invD * (get_eBar(f) - invRho*jSqr) - rhoBar;
}

static void compute_rho_rhoThetaBar(Array<T,Descriptor::q> const& f, T& rho, T& rhoThetaBar) {
    T rhoBar, j[Descriptor::d];
    get_rhoBar_j(f, rhoBar, j);
    T jSqr = VectorTemplateImpl<T,Descriptor::d>::normSqr(j);
    rho = Descriptor::fullRho(rhoBar);
    rhoThetaBar = compute_rhoThetaBar(f, rhoBar, jSqr);
}

static T compute_theta(Array<T,Descriptor::q> const& f, T rhoBar, T jSqr) {
    T invRho = Descriptor::invRho(rhoBar);
    T e = compute_e(f);
    return invRho * Descriptor::invD * Descriptor::invCs2 * (e - invRho*jSqr);
}

static T compute_rhoEpsilon(Array<T,Descriptor::q> const& f, T rhoBar, T jSqr) {
    T invRho = Descriptor::invRho(rhoBar);
    T e = compute_e(f);
    return (e - invRho*jSqr) / (T)2;
}

static void compute_PiNeq(Array<T,Descriptor::q> const& f, T rhoBar, Array<T,Descriptor::d> const& j,
                          Array<T,SymmetricTensorImpl<T,Descriptor::d>::n>& PiNeq )
{
   T invRho = Descriptor::invRho(rhoBar);
   compute_PiNeq(f, rhoBar, j, PiNeq, invRho);
}

static void compute_PiNeq(Array<T,Descriptor::q> const& f, T rhoBar, Array<T,Descriptor::d> const& j,
                          Array<T,SymmetricTensorImpl<T,Descriptor::d>::n>& PiNeq, T invRho )
{
    int iPi = 0;
    for (int iAlpha=0; iAlpha < Descriptor::d; ++iAlpha) {
        int iDiagonal = iPi;
        for (int iBeta=iAlpha; iBeta < Descriptor::d; ++iBeta) {
            PiNeq[iPi] = Descriptor::c[0][iAlpha]*
                         Descriptor::c[0][iBeta] * f[0];
            for (plint iPop=1; iPop < Descriptor::q; ++iPop) {
                PiNeq[iPi] += Descriptor::c[iPop][iAlpha]*
                              Descriptor::c[iPop][iBeta] * f[iPop];
            }
            // Stripe off relative velocity
            PiNeq[iPi] -= invRho*j[iAlpha]*j[iBeta];
            ++iPi;
        }
        // Stripe off diagonal term
        PiNeq[iDiagonal] -= Descriptor::cs2 * rhoBar;
    }
}

static void compute_PiNeq(Array<T,Descriptor::q> const& fNeq, Array<T,SymmetricTensorImpl<T,Descriptor::d>::n>& PiNeq)
{
    int iPi = 0;
    for (int iAlpha=0; iAlpha < Descriptor::d; ++iAlpha) {
        for (int iBeta=iAlpha; iBeta < Descriptor::d; ++iBeta) {
            PiNeq[iPi] = Descriptor::c[0][iAlpha]*
                         Descriptor::c[0][iBeta] * fNeq[0];
            for (plint iPop=1; iPop < Descriptor::q; ++iPop) {
                PiNeq[iPi] += Descriptor::c[iPop][iAlpha]*
                              Descriptor::c[iPop][iBeta] * fNeq[iPop];
            }
            ++iPi;
        }
    }
}

static void compute_thermal_PiNeq(Array<T,Descriptor::q> const& f, T rhoBar, T thetaBar,
                                  Array<T,Descriptor::d> const& j,
                                  Array<T,SymmetricTensorImpl<T,Descriptor::d>::n>& PiNeq )
{
    // rhoTheta_bar == rho*theta - 1 
    T rhoTheta_bar = rhoBar * thetaBar + rhoBar + Descriptor::SkordosFactor() * thetaBar;
    
    T invRho = Descriptor::invRho(rhoBar);
    int iPi = 0;
    for (int iAlpha=0; iAlpha < Descriptor::d; ++iAlpha) {
        int iDiagonal = iPi;
        for (int iBeta=iAlpha; iBeta < Descriptor::d; ++iBeta) {
            PiNeq[iPi] = Descriptor::c[0][iAlpha]*
                         Descriptor::c[0][iBeta] * f[0];
            for (plint iPop=1; iPop < Descriptor::q; ++iPop) {
                PiNeq[iPi] += Descriptor::c[iPop][iAlpha]*
                              Descriptor::c[iPop][iBeta] * f[iPop];
            }
            // Stripe off relative velocity
            PiNeq[iPi] -= invRho*j[iAlpha]*j[iBeta];
            ++iPi;
        }
        // Stripe off diagonal term
        PiNeq[iDiagonal] -= Descriptor::cs2 * rhoTheta_bar;
    }
}

static void compute_rhoBar_j_PiNeq(Array<T,Descriptor::q> const& f, T& rhoBar, Array<T,Descriptor::d>& j,
                                   Array<T,SymmetricTensorImpl<T,Descriptor::d>::n>& PiNeq )
{
    get_rhoBar_j(f, rhoBar, j);
    compute_PiNeq(f, rhoBar, j, PiNeq);
}

static void compute_rhoBar_j_PiNeq(Array<T,Descriptor::q> const& f, T& rhoBar, Array<T,Descriptor::d>& j,
                                   Array<T,SymmetricTensorImpl<T,Descriptor::d>::n>& PiNeq, T invRho )
{
    get_rhoBar_j(f, rhoBar, j);
    compute_PiNeq(f, rhoBar, j, PiNeq, invRho);
}

static void compute_rhoBar_thetaBar_j_PiNeq(Array<T,Descriptor::q> const& f, T& rhoBar, T& thetaBar,
                                            Array<T,Descriptor::d> & j,
                                            Array<T,SymmetricTensorImpl<T,Descriptor::d>::n>& PiNeq )
{
    get_rhoBar_j_thetaBar(f,rhoBar,j, thetaBar);
    compute_thermal_PiNeq(f, rhoBar, thetaBar, j, PiNeq);
}

static void compute_rhoBar_thetaBar_j_PiNeq_qNeq(Array<T,Descriptor::q> const& f, T& rhoBar, T& thetaBar,
                                                 Array<T,Descriptor::d> & j,
                                                 Array<T,SymmetricTensorImpl<T,Descriptor::d>::n>& PiNeq,
                                                 Array<T,SymmetricRankThreeTensorImpl<T,Descriptor::d>::n>& qNeq)
{
    compute_rhoBar_thetaBar_j_PiNeq(f, rhoBar, thetaBar, j, PiNeq);
    compute_Qneq(f, rhoBar, j, thetaBar, qNeq );
}


static void compute_P(Array<T,Descriptor::q> const& f, T rhoBar, Array<T,Descriptor::d> const& j,
                      Array<T,SymmetricTensorImpl<T,Descriptor::d>::n>& P )
{
    T invRho = Descriptor::invRho(rhoBar);
    plint iP = 0;
    for (int iAlpha=0; iAlpha < Descriptor::d; ++iAlpha) {
        for (int iBeta=iAlpha; iBeta < Descriptor::d; ++iBeta) {
            P[iP] = Descriptor::c[0][iAlpha]*
                    Descriptor::c[0][iBeta] * f[0];
            for (plint iPop=1; iPop < Descriptor::q; ++iPop) {
                P[iP] += Descriptor::c[iPop][iAlpha]*
                         Descriptor::c[iPop][iBeta] * f[iPop];
            }
            // Stripe off relative velocity
            P[iP] -= invRho*j[iAlpha]*j[iBeta];
            ++iP;
        }
    }
}

static void modifyJ(T* f, Array<T,Descriptor::d> const& newJ) {
    T rhoBar;
    Array<T,Descriptor::d> oldJ;
    get_rhoBar_j(f, rhoBar, oldJ);
    T invRho = Descriptor::invRho(rhoBar);
    const T oldJSqr = VectorTemplateImpl<T,Descriptor::d>::normSqr(oldJ);
    const T newJSqr = VectorTemplateImpl<T,Descriptor::d>::normSqr(newJ);
    for (plint iPop=0; iPop<Descriptor::q; ++iPop) {
        f[iPop] = f[iPop]
                         - bgk_ma2_equilibrium(iPop, rhoBar, invRho, oldJ, oldJSqr)
                         + bgk_ma2_equilibrium(iPop, rhoBar, invRho, newJ, newJSqr);
    }
}

static void compute_Qneq(Array<T,Descriptor::q> const& f, T rhoBar, Array<T,Descriptor::d> const& j,
                         T thetaBar,
                         Array<T,SymmetricRankThreeTensorImpl<T,Descriptor::d>::n>& qNeq )
{
    typedef Descriptor L;
    T invRho = L::invRho(rhoBar);
    T factor = L::cs2+thetaBar;
    plint iQ = 0;
    for (plint iA = 0; iA < L::d; ++iA) {
        for (plint iB = iA; iB < L::d; ++iB) {
            for (plint iC = iB; iC < L::d; ++iC) {
                qNeq[iQ] = - j[iA]*j[iB]*j[iC]*invRho*invRho;
                for (plint iPop = 0; iPop < L::q; ++iPop) {
                    qNeq[iQ] = L::c[iPop][iA]*L::c[iPop][iB]*L::c[iPop][iC]*f[iPop];
                }
                if (iA == iB && iB == iC) {
                    qNeq[iQ] -= (T)3 * factor * j[iA];
                }
                else if (iA == iB && iB != iC) {
                    qNeq[iQ] -= factor * j[iC];
                }
                else if (iA == iC && iC != iB) {
                    qNeq[iQ] -= factor * j[iB];
                }
                else if (iB == iC && iC != iA) {
                    qNeq[iQ] -= factor * j[iA];
                }
                
                ++iQ;
            }
        }
    }
    
}

static void compute_heat_flux(Array<T,Descriptor::q> const& f, T rhoBar, Array<T,Descriptor::d> const& j,
                              T thetaBar,
                              Array<T,Descriptor::d>& q)
{
    
    typedef Descriptor L;
    Array<T,SymmetricRankThreeTensorImpl<T,Descriptor::d>::n> qNeq;
    compute_Qneq(f, rhoBar, j,thetaBar,qNeq );
    SymmetricRankThreeTensorImpl<T,L::d>::contractLastTwoIndexes(qNeq,q);
}

};  // struct momentTemplatesImpl

}  // namespace plb

#include "latticeBoltzmann/momentTemplates2D.h"
#include "latticeBoltzmann/momentTemplates3D.h"

#endif  // MOMENT_TEMPLATES_H