/usr/include/palabos/finiteDifference/finiteDifference3D.h is in libplb-dev 1.5~r1+repack1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 | /* This file is part of the Palabos library.
*
* Copyright (C) 2011-2015 FlowKit Sarl
* Route d'Oron 2
* 1010 Lausanne, Switzerland
* E-mail contact: contact@flowkit.com
*
* The most recent release of Palabos can be downloaded at
* <http://www.palabos.org/>
*
* The library Palabos is free software: you can redistribute it and/or
* modify it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of the
* License, or (at your option) any later version.
*
* The library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef FINITE_DIFFERENCE_3D_H
#define FINITE_DIFFERENCE_3D_H
#include "core/globalDefs.h"
#include "finiteDifference/fdStencils1D.h"
namespace plb {
namespace fd {
template<typename T, template<typename U> class Descriptor,
int direction, int orientation, int deriveDirection,
bool orthogonal>
struct DirectedGradients3D {
/// Nearest-neighbor evaluation of velocity derivative, first-order accurate
/// only along the boundary normal.
static void o1_velocityDerivative( Array<T,Descriptor<T>::d>& velDeriv,
BlockLattice3D<T,Descriptor> const& blockLattice,
plint iX, plint iY, plint iZ );
/// Nearest-neighbor evaluation of density derivative, first-order accurate
/// only along the boundary normal.
static void o1_densityDerivative( T& rhoDeriv,
BlockLattice3D<T,Descriptor> const& blockLattice,
plint iX, plint iY, plint iZ );
/// Next-to-nearest-neibhbor, second-order accurate evaluation of velocity
/// derivative.
static void o2_velocityDerivative( Array<T,Descriptor<T>::d>& velDeriv,
BlockLattice3D<T,Descriptor> const& blockLattice,
plint iX, plint iY, plint iZ );
/// Next-to-nearest-neibhbor, second-order accurate evaluation of density
/// derivative.
static void o2_densityDerivative( T& rhoDeriv,
BlockLattice3D<T,Descriptor> const& blockLattice,
plint iX, plint iY, plint iZ );
};
// Implementation for orthogonal==true; i.e. the derivative is along the boundary normal.
template<typename T, template<typename U> class Descriptor,
int direction, int orientation, int deriveDirection>
struct DirectedGradients3D<T, Descriptor, direction, orientation,
deriveDirection, true>
{
static void o1_velocityDerivative(Array<T,Descriptor<T>::d>& velDeriv,
BlockLattice3D<T,Descriptor> const& blockLattice,
plint iX, plint iY, plint iZ)
{
Array<T,Descriptor<T>::d> u0, u1;
blockLattice.get(iX,iY,iZ).computeVelocity(u0);
blockLattice.get (
iX+(direction==0 ? (-orientation):0),
iY+(direction==1 ? (-orientation):0),
iZ+(direction==2 ? (-orientation):0) ).computeVelocity(u1);
for (int iD=0; iD<Descriptor<T>::d; ++iD) {
velDeriv[iD] = -orientation * fd::o1_fwd_diff(u0[iD], u1[iD]);
}
}
static void o1_densityDerivative(T& rhoDeriv,
BlockLattice3D<T,Descriptor> const& blockLattice,
plint iX, plint iY, plint iZ)
{
// note that the derivative runs along direction.
T rho0 = blockLattice.get(iX,iY,iZ).computeDensity();
T rho1 = blockLattice.get (
iX+(direction==0 ? (-orientation):0),
iY+(direction==1 ? (-orientation):0),
iZ+(direction==2 ? (-orientation):0) ).computeDensity();
rhoDeriv = -orientation * fd::o1_fwd_diff(rho0, rho1);
}
static void o2_velocityDerivative(Array<T,Descriptor<T>::d>& velDeriv,
BlockLattice3D<T,Descriptor> const& blockLattice,
plint iX, plint iY, plint iZ)
{
Array<T,Descriptor<T>::d> u0, u1, u2;
blockLattice.get(iX,iY,iZ).computeVelocity(u0);
blockLattice.get (
iX+(direction==0 ? (-orientation):0),
iY+(direction==1 ? (-orientation):0),
iZ+(direction==2 ? (-orientation):0) ).computeVelocity(u1);
blockLattice.get (
iX+(direction==0 ? (-2*orientation):0),
iY+(direction==1 ? (-2*orientation):0),
iZ+(direction==2 ? (-2*orientation):0) ).computeVelocity(u2);
for (int iD=0; iD<Descriptor<T>::d; ++iD) {
velDeriv[iD] = -orientation * fd::fwd_diff(u0[iD], u1[iD], u2[iD]);
}
}
static void o2_densityDerivative(T& rhoDeriv,
BlockLattice3D<T,Descriptor> const& blockLattice,
plint iX, plint iY, plint iZ)
{
// note that the derivative runs along direction.
T rho0 = blockLattice.get(iX,iY,iZ).computeDensity();
T rho1 = blockLattice.get (
iX+(direction==0 ? (-orientation):0),
iY+(direction==1 ? (-orientation):0),
iZ+(direction==2 ? (-orientation):0) ).computeDensity();
T rho2 = blockLattice.get (
iX+(direction==0 ? (-2*orientation):0),
iY+(direction==1 ? (-2*orientation):0),
iZ+(direction==2 ? (-2*orientation):0) ).computeDensity();
rhoDeriv = -orientation * fd::fwd_diff(rho0, rho1, rho2);
}
};
// Implementation for orthogonal==false; i.e. the derivative is aligned with the boundary.
template<typename T, template<typename U> class Descriptor,
int direction, int orientation, int deriveDirection>
struct DirectedGradients3D<T, Descriptor, direction, orientation,
deriveDirection, false>
{
static void o1_velocityDerivative(Array<T,Descriptor<T>::d>& velDeriv,
BlockLattice3D<T,Descriptor> const& blockLattice,
plint iX, plint iY, plint iZ)
{
// Along the boundary, second-order accuracy is achieved with a nearest-
// neighbor scheme.
o2_velocityDerivative(velDeriv, blockLattice, iX,iY,iZ);
}
static void o1_densityDerivative(T& rhoDeriv,
BlockLattice3D<T,Descriptor> const& blockLattice,
plint iX, plint iY, plint iZ)
{
// Along the boundary, second-order accuracy is achieved with a nearest-
// neighbor scheme.
o2_densityDerivative(rhoDeriv, blockLattice, iX,iY,iZ);
}
static void o2_velocityDerivative(Array<T,Descriptor<T>::d>& velDeriv,
BlockLattice3D<T,Descriptor> const& blockLattice,
plint iX, plint iY, plint iZ)
{
Array<T,Descriptor<T>::d> u_p1, u_m1;
blockLattice.get (
iX+(deriveDirection==0 ? 1:0),
iY+(deriveDirection==1 ? 1:0),
iZ+(deriveDirection==2 ? 1:0) ).computeVelocity(u_p1);
blockLattice.get (
iX+(deriveDirection==0 ? (-1):0),
iY+(deriveDirection==1 ? (-1):0),
iZ+(deriveDirection==2 ? (-1):0) ).computeVelocity(u_m1);
for (int iD=0; iD<Descriptor<T>::d; ++iD) {
velDeriv[iD] = fd::ctl_diff(u_p1[iD],u_m1[iD]);
}
}
static void o2_densityDerivative(T& rhoDeriv,
BlockLattice3D<T,Descriptor> const& blockLattice,
plint iX, plint iY, plint iZ)
{
T rho_p1 = blockLattice.get (
iX+(deriveDirection==0 ? 1:0),
iY+(deriveDirection==1 ? 1:0),
iZ+(deriveDirection==2 ? 1:0) ).computeDensity();
T rho_m1 = blockLattice.get (
iX+(deriveDirection==0 ? (-1):0),
iY+(deriveDirection==1 ? (-1):0),
iZ+(deriveDirection==2 ? (-1):0) ).computeDensity();
rhoDeriv = fd::ctl_diff(rho_p1, rho_m1);
}
};
} // namespace fd
} // namespace plb
#endif // FINITE_DIFFERENCE_3D_H
|