This file is indexed.

/usr/include/palabos/finiteDifference/finiteDifference3D.h is in libplb-dev 1.5~r1+repack1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
/* This file is part of the Palabos library.
 *
 * Copyright (C) 2011-2015 FlowKit Sarl
 * Route d'Oron 2
 * 1010 Lausanne, Switzerland
 * E-mail contact: contact@flowkit.com
 *
 * The most recent release of Palabos can be downloaded at 
 * <http://www.palabos.org/>
 *
 * The library Palabos is free software: you can redistribute it and/or
 * modify it under the terms of the GNU Affero General Public License as
 * published by the Free Software Foundation, either version 3 of the
 * License, or (at your option) any later version.
 *
 * The library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Affero General Public License for more details.
 *
 * You should have received a copy of the GNU Affero General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
*/

#ifndef FINITE_DIFFERENCE_3D_H
#define FINITE_DIFFERENCE_3D_H

#include "core/globalDefs.h"
#include "finiteDifference/fdStencils1D.h"

namespace plb {

namespace fd {

    template<typename T, template<typename U> class Descriptor,
             int direction, int orientation, int deriveDirection,
             bool orthogonal>
    struct DirectedGradients3D {
        /// Nearest-neighbor evaluation of velocity derivative, first-order accurate
        ///   only along the boundary normal.
        static void o1_velocityDerivative( Array<T,Descriptor<T>::d>& velDeriv,
                                           BlockLattice3D<T,Descriptor> const& blockLattice,
                                           plint iX, plint iY, plint iZ );
        /// Nearest-neighbor evaluation of density derivative, first-order accurate
        ///   only along the boundary normal.
        static void o1_densityDerivative( T& rhoDeriv,
                                          BlockLattice3D<T,Descriptor> const& blockLattice,
                                          plint iX, plint iY, plint iZ );
        /// Next-to-nearest-neibhbor, second-order accurate evaluation of velocity
        ///   derivative.
        static void o2_velocityDerivative( Array<T,Descriptor<T>::d>& velDeriv,
                                           BlockLattice3D<T,Descriptor> const& blockLattice,
                                           plint iX, plint iY, plint iZ );
        /// Next-to-nearest-neibhbor, second-order accurate evaluation of density
        ///   derivative.
        static void o2_densityDerivative( T& rhoDeriv,
                                          BlockLattice3D<T,Descriptor> const& blockLattice,
                                          plint iX, plint iY, plint iZ );
    };

    // Implementation for orthogonal==true; i.e. the derivative is along the boundary normal.
    template<typename T, template<typename U> class Descriptor,
             int direction, int orientation, int deriveDirection>
    struct DirectedGradients3D<T, Descriptor, direction, orientation,
                               deriveDirection, true>
    {
        static void o1_velocityDerivative(Array<T,Descriptor<T>::d>& velDeriv,
                                          BlockLattice3D<T,Descriptor> const& blockLattice,
                                          plint iX, plint iY, plint iZ)
        {
            Array<T,Descriptor<T>::d> u0, u1;
            
            blockLattice.get(iX,iY,iZ).computeVelocity(u0);
            blockLattice.get (
                iX+(direction==0 ? (-orientation):0),
                iY+(direction==1 ? (-orientation):0),
                iZ+(direction==2 ? (-orientation):0)  ).computeVelocity(u1);

            for (int iD=0; iD<Descriptor<T>::d; ++iD) {
                velDeriv[iD] = -orientation * fd::o1_fwd_diff(u0[iD], u1[iD]);
            }
        }

        static void o1_densityDerivative(T& rhoDeriv,
                                         BlockLattice3D<T,Descriptor> const& blockLattice,
                                         plint iX, plint iY, plint iZ)
        {
            // note that the derivative runs along direction.
            T rho0 = blockLattice.get(iX,iY,iZ).computeDensity();
            T rho1 = blockLattice.get (
                        iX+(direction==0 ? (-orientation):0),
                        iY+(direction==1 ? (-orientation):0),
                        iZ+(direction==2 ? (-orientation):0)  ).computeDensity();
            rhoDeriv = -orientation * fd::o1_fwd_diff(rho0, rho1);
        }

        static void o2_velocityDerivative(Array<T,Descriptor<T>::d>& velDeriv,
                                          BlockLattice3D<T,Descriptor> const& blockLattice,
                                          plint iX, plint iY, plint iZ)
        {
            Array<T,Descriptor<T>::d> u0, u1, u2;
            
            blockLattice.get(iX,iY,iZ).computeVelocity(u0);
            blockLattice.get (
                iX+(direction==0 ? (-orientation):0),
                iY+(direction==1 ? (-orientation):0),
                iZ+(direction==2 ? (-orientation):0)  ).computeVelocity(u1);
            blockLattice.get (
                iX+(direction==0 ? (-2*orientation):0),
                iY+(direction==1 ? (-2*orientation):0),
                iZ+(direction==2 ? (-2*orientation):0) ).computeVelocity(u2);

            for (int iD=0; iD<Descriptor<T>::d; ++iD) {
                velDeriv[iD] = -orientation * fd::fwd_diff(u0[iD], u1[iD], u2[iD]);
            }
        }

        static void o2_densityDerivative(T& rhoDeriv,
                                         BlockLattice3D<T,Descriptor> const& blockLattice,
                                         plint iX, plint iY, plint iZ)
        {
            // note that the derivative runs along direction.
            T rho0 = blockLattice.get(iX,iY,iZ).computeDensity();
            T rho1 = blockLattice.get (
                        iX+(direction==0 ? (-orientation):0),
                        iY+(direction==1 ? (-orientation):0),
                        iZ+(direction==2 ? (-orientation):0)  ).computeDensity();
            T rho2 = blockLattice.get (
                        iX+(direction==0 ? (-2*orientation):0),
                        iY+(direction==1 ? (-2*orientation):0),
                        iZ+(direction==2 ? (-2*orientation):0) ).computeDensity();

            rhoDeriv = -orientation * fd::fwd_diff(rho0, rho1, rho2);
        }
    };

    // Implementation for orthogonal==false; i.e. the derivative is aligned with the boundary.
    template<typename T, template<typename U> class Descriptor,
             int direction, int orientation, int deriveDirection>
    struct DirectedGradients3D<T, Descriptor, direction, orientation,
                               deriveDirection, false>
    {
        static void  o1_velocityDerivative(Array<T,Descriptor<T>::d>& velDeriv,
                                           BlockLattice3D<T,Descriptor> const& blockLattice,
                                           plint iX, plint iY, plint iZ)
        {
            // Along the boundary, second-order accuracy is achieved with a nearest-
            //   neighbor scheme.
            o2_velocityDerivative(velDeriv, blockLattice, iX,iY,iZ);
        }
        static void  o1_densityDerivative(T& rhoDeriv,
                                          BlockLattice3D<T,Descriptor> const& blockLattice,
                                          plint iX, plint iY, plint iZ)
        {
            // Along the boundary, second-order accuracy is achieved with a nearest-
            //   neighbor scheme.
            o2_densityDerivative(rhoDeriv, blockLattice, iX,iY,iZ);
        }
        static void  o2_velocityDerivative(Array<T,Descriptor<T>::d>& velDeriv,
                                           BlockLattice3D<T,Descriptor> const& blockLattice,
                                           plint iX, plint iY, plint iZ)
        {
            Array<T,Descriptor<T>::d> u_p1, u_m1;
            
            blockLattice.get (
                iX+(deriveDirection==0 ? 1:0),
                iY+(deriveDirection==1 ? 1:0),
                iZ+(deriveDirection==2 ? 1:0) ).computeVelocity(u_p1);

            blockLattice.get (
                iX+(deriveDirection==0 ? (-1):0),
                iY+(deriveDirection==1 ? (-1):0),
                iZ+(deriveDirection==2 ? (-1):0) ).computeVelocity(u_m1);

            for (int iD=0; iD<Descriptor<T>::d; ++iD) {
                velDeriv[iD] = fd::ctl_diff(u_p1[iD],u_m1[iD]);
            }
        }

        static void  o2_densityDerivative(T& rhoDeriv,
                                          BlockLattice3D<T,Descriptor> const& blockLattice,
                                          plint iX, plint iY, plint iZ)
        {
            T rho_p1 = blockLattice.get (
                        iX+(deriveDirection==0 ? 1:0),
                        iY+(deriveDirection==1 ? 1:0),
                        iZ+(deriveDirection==2 ? 1:0) ).computeDensity();

            T rho_m1 = blockLattice.get (
                        iX+(deriveDirection==0 ? (-1):0),
                        iY+(deriveDirection==1 ? (-1):0),
                        iZ+(deriveDirection==2 ? (-1):0) ).computeDensity();

            rhoDeriv = fd::ctl_diff(rho_p1, rho_m1);
        }
    };

}  // namespace fd

}  // namespace plb


#endif  // FINITE_DIFFERENCE_3D_H