/usr/include/palabos/finiteDifference/fdWrapper3D.hh is in libplb-dev 1.5~r1+repack1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 | /* This file is part of the Palabos library.
*
* Copyright (C) 2011-2015 FlowKit Sarl
* Route d'Oron 2
* 1010 Lausanne, Switzerland
* E-mail contact: contact@flowkit.com
*
* The most recent release of Palabos can be downloaded at
* <http://www.palabos.org/>
*
* The library Palabos is free software: you can redistribute it and/or
* modify it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of the
* License, or (at your option) any later version.
*
* The library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/** \file
* Helper functions for domain initialization -- header file.
*/
#ifndef FINITE_DIFFERENCE_WRAPPER_3D_HH
#define FINITE_DIFFERENCE_WRAPPER_3D_HH
#include "finiteDifference/fdWrapper3D.h"
#include "finiteDifference/fdFunctional3D.h"
#include "atomicBlock/reductiveDataProcessorWrapper3D.h"
#include "atomicBlock/dataProcessorWrapper3D.h"
#include "multiBlock/reductiveMultiDataProcessorWrapper3D.h"
#include "multiBlock/multiDataProcessorWrapper3D.h"
namespace plb {
template<typename T>
void computeXderivative(MultiScalarField3D<T>& value, MultiScalarField3D<T>& derivative, Box3D const& domain) {
plint boundaryWidth = 1;
applyProcessingFunctional (
new BoxXderivativeFunctional3D<T>, domain, value, derivative, boundaryWidth );
}
template<typename T>
std::auto_ptr<MultiScalarField3D<T> > computeXderivative(MultiScalarField3D<T>& value, Box3D const& domain) {
MultiScalarField3D<T>* derivative = new MultiScalarField3D<T>(value, domain);
computeXderivative(value, *derivative, domain);
return std::auto_ptr<MultiScalarField3D<T> >(derivative);
}
template<typename T>
std::auto_ptr<MultiScalarField3D<T> > computeXderivative(MultiScalarField3D<T>& value) {
return computeXderivative(value, value.getBoundingBox());
}
template<typename T>
void computeYderivative(MultiScalarField3D<T>& value, MultiScalarField3D<T>& derivative, Box3D const& domain) {
plint boundaryWidth = 1;
applyProcessingFunctional (
new BoxYderivativeFunctional3D<T>, domain, value, derivative, boundaryWidth );
}
template<typename T>
std::auto_ptr<MultiScalarField3D<T> > computeYderivative(MultiScalarField3D<T>& value, Box3D const& domain) {
MultiScalarField3D<T>* derivative = new MultiScalarField3D<T>(value, domain);
computeYderivative(value, *derivative, domain);
return std::auto_ptr<MultiScalarField3D<T> >(derivative);
}
template<typename T>
std::auto_ptr<MultiScalarField3D<T> > computeYderivative(MultiScalarField3D<T>& value) {
return computeYderivative(value, value.getBoundingBox());
}
template<typename T>
void computeZderivative(MultiScalarField3D<T>& value, MultiScalarField3D<T>& derivative, Box3D const& domain) {
plint boundaryWidth = 1;
applyProcessingFunctional (
new BoxZderivativeFunctional3D<T>, domain, value, derivative, boundaryWidth );
}
template<typename T>
std::auto_ptr<MultiScalarField3D<T> > computeZderivative(MultiScalarField3D<T>& value, Box3D const& domain) {
MultiScalarField3D<T>* derivative = new MultiScalarField3D<T>(value, domain);
computeZderivative(value, *derivative, domain);
return std::auto_ptr<MultiScalarField3D<T> >(derivative);
}
template<typename T>
std::auto_ptr<MultiScalarField3D<T> > computeZderivative(MultiScalarField3D<T>& value) {
return computeZderivative(value, value.getBoundingBox());
}
template<typename T>
void computeGradientNorm(MultiScalarField3D<T>& value, MultiScalarField3D<T>& derivative, Box3D const& domain) {
plint boundaryWidth = 1;
applyProcessingFunctional (
new BoxGradientNormFunctional3D<T>, domain, value, derivative, boundaryWidth );
}
template<typename T>
std::auto_ptr<MultiScalarField3D<T> > computeGradientNorm(MultiScalarField3D<T>& value, Box3D const& domain) {
MultiScalarField3D<T>* derivative = new MultiScalarField3D<T>(value, domain);
computeGradientNorm(value, *derivative, domain);
return std::auto_ptr<MultiScalarField3D<T> >(derivative);
}
template<typename T>
std::auto_ptr<MultiScalarField3D<T> > computeGradientNorm(MultiScalarField3D<T>& value) {
return computeGradientNorm(value, value.getBoundingBox());
}
template<typename T>
void computePeriodicGradient(MultiScalarField3D<T>& value, MultiTensorField3D<T,3>& derivative, Box3D const& domain) {
applyProcessingFunctional (
new BoxPeriodicGradientFunctional3D<T>, domain, value, derivative );
}
template<typename T>
std::auto_ptr<MultiTensorField3D<T,3> > computePeriodicGradient(MultiScalarField3D<T>& value, Box3D const& domain) {
MultiTensorField3D<T,3>* derivative = new MultiTensorField3D<T,2>(value, domain);
computePeriodicGradient(value, *derivative, domain);
return std::auto_ptr<MultiTensorField3D<T,3> >(derivative);
}
template<typename T>
std::auto_ptr<MultiTensorField3D<T,3> > computePeriodicGradient(MultiScalarField3D<T>& value) {
return computePeriodicGradient(value, value.getBoundingBox());
}
template<typename T>
std::auto_ptr<MultiScalarField3D<T> > computePoissonRHS(MultiTensorField3D<T,3>& velocity, Box3D const& domain)
{
std::auto_ptr<MultiScalarField3D<T> > ux = extractComponent(velocity, domain, 0);
std::auto_ptr<MultiScalarField3D<T> > uy = extractComponent(velocity, domain, 1);
std::auto_ptr<MultiScalarField3D<T> > uz = extractComponent(velocity, domain, 2);
std::auto_ptr<MultiScalarField3D<T> > dx_ux = computeXderivative(*ux, domain);
std::auto_ptr<MultiScalarField3D<T> > dy_ux = computeYderivative(*ux, domain);
std::auto_ptr<MultiScalarField3D<T> > dz_ux = computeZderivative(*ux, domain);
std::auto_ptr<MultiScalarField3D<T> > dx_uy = computeXderivative(*uy, domain);
std::auto_ptr<MultiScalarField3D<T> > dy_uy = computeYderivative(*uy, domain);
std::auto_ptr<MultiScalarField3D<T> > dz_uy = computeZderivative(*uy, domain);
std::auto_ptr<MultiScalarField3D<T> > dx_uz = computeXderivative(*uz, domain);
std::auto_ptr<MultiScalarField3D<T> > dy_uz = computeYderivative(*uz, domain);
std::auto_ptr<MultiScalarField3D<T> > dz_uz = computeZderivative(*uz, domain);
std::auto_ptr<MultiScalarField3D<T> > term1 = multiply(*dx_ux, *dx_ux, domain);
std::auto_ptr<MultiScalarField3D<T> > term2 = multiply(*dy_uy, *dy_uy, domain);
std::auto_ptr<MultiScalarField3D<T> > term3 = multiply(*dz_uz, *dz_uz, domain);
std::auto_ptr<MultiScalarField3D<T> > term4 = multiply((T)2, *multiply(*dx_uy, *dy_ux, domain), domain);
std::auto_ptr<MultiScalarField3D<T> > term5 = multiply((T)2, *multiply(*dx_uz, *dz_ux, domain), domain);
std::auto_ptr<MultiScalarField3D<T> > term6 = multiply((T)2, *multiply(*dy_uz, *dz_uy, domain), domain);
std::auto_ptr<MultiScalarField3D<T> > rhs = add(*term6, *add(*term5, *add(*term4, *add(*term1, *add(*term2, *term3)))));
return rhs;
}
template<typename T>
std::auto_ptr<MultiScalarField3D<T> > computePoissonRHS(MultiTensorField3D<T,3>& velocity) {
return computePoissonRHS(velocity, velocity.getBoundingBox());
}
template<typename T>
void poissonIterate(MultiScalarField3D<T>& oldPressure, MultiScalarField3D<T>& newPressure,
MultiScalarField3D<T>& rhs, T beta, Box3D const& domain, plint boundaryWidth)
{
std::vector<MultiScalarField3D<T>* > fields;
fields.push_back(&oldPressure);
fields.push_back(&newPressure);
fields.push_back(&rhs);
applyProcessingFunctional (
new BoxPoissonIteration3D<T>(beta), domain, fields, boundaryWidth );
}
template<typename T>
T computePoissonResidue(MultiScalarField3D<T>& pressure, MultiScalarField3D<T>& rhs, Box3D const& domain) {
BoxPoissonResidueFunctional3D<T> functional;
applyProcessingFunctional(functional, domain, pressure, rhs);
return functional.getMaxResidue();
}
// ========================================================================= //
// PERIODIC VERSIONS OF THE DERIVATIVES AND POISSON SCHEMES //
// ========================================================================= //
template<typename T>
void computeXperiodicDerivative(MultiScalarField3D<T>& value, MultiScalarField3D<T>& derivative, Box3D const& domain) {
plint boundaryWidth = 1;
applyProcessingFunctional (
new BoxXperiodicDerivativeFunctional3D<T>, domain, value, derivative, boundaryWidth );
}
template<typename T>
std::auto_ptr<MultiScalarField3D<T> > computeXperiodicDerivative(MultiScalarField3D<T>& value, Box3D const& domain) {
MultiScalarField3D<T>* derivative = new MultiScalarField3D<T>(value, domain);
computeXperiodicDerivative(value, *derivative, domain);
return std::auto_ptr<MultiScalarField3D<T> >(derivative);
}
template<typename T>
std::auto_ptr<MultiScalarField3D<T> > computeXperiodicDerivative(MultiScalarField3D<T>& value) {
return computeXperiodicDerivative(value, value.getBoundingBox());
}
template<typename T>
void computeYperiodicDerivative(MultiScalarField3D<T>& value, MultiScalarField3D<T>& derivative, Box3D const& domain) {
plint boundaryWidth = 1;
applyProcessingFunctional (
new BoxYperiodicDerivativeFunctional3D<T>, domain, value, derivative, boundaryWidth );
}
template<typename T>
std::auto_ptr<MultiScalarField3D<T> > computeYperiodicDerivative(MultiScalarField3D<T>& value, Box3D const& domain) {
MultiScalarField3D<T>* derivative = new MultiScalarField3D<T>(value, domain);
computeYperiodicDerivative(value, *derivative, domain);
return std::auto_ptr<MultiScalarField3D<T> >(derivative);
}
template<typename T>
std::auto_ptr<MultiScalarField3D<T> > computeYperiodicDerivative(MultiScalarField3D<T>& value) {
return computeYperiodicDerivative(value, value.getBoundingBox());
}
template<typename T>
void computeZperiodicDerivative(MultiScalarField3D<T>& value, MultiScalarField3D<T>& derivative, Box3D const& domain) {
plint boundaryWidth = 1;
applyProcessingFunctional (
new BoxZperiodicDerivativeFunctional3D<T>, domain, value, derivative, boundaryWidth );
}
template<typename T>
std::auto_ptr<MultiScalarField3D<T> > computeZperiodicDerivative(MultiScalarField3D<T>& value, Box3D const& domain) {
MultiScalarField3D<T>* derivative = new MultiScalarField3D<T>(value, domain);
computeZperiodicDerivative(value, *derivative, domain);
return std::auto_ptr<MultiScalarField3D<T> >(derivative);
}
template<typename T>
std::auto_ptr<MultiScalarField3D<T> > computeZperiodicDerivative(MultiScalarField3D<T>& value) {
return computeZperiodicDerivative(value, value.getBoundingBox());
}
template<typename T>
void computePeriodicGradientNorm(MultiScalarField3D<T>& value, MultiScalarField3D<T>& derivative, Box3D const& domain) {
plint boundaryWidth = 1;
applyProcessingFunctional (
new BoxGradientNormFunctional3D<T>, domain, value, derivative, boundaryWidth );
}
template<typename T>
std::auto_ptr<MultiScalarField3D<T> > computePeriodicGradientNorm(MultiScalarField3D<T>& value, Box3D const& domain) {
MultiScalarField3D<T>* derivative = new MultiScalarField3D<T>(value, domain);
computePeriodicGradientNorm(value, *derivative, domain);
return std::auto_ptr<MultiScalarField3D<T> >(derivative);
}
template<typename T>
std::auto_ptr<MultiScalarField3D<T> > computePeriodicGradientNorm(MultiScalarField3D<T>& value) {
return computePeriodicGradientNorm(value, value.getBoundingBox());
}
template<typename T>
std::auto_ptr<MultiScalarField3D<T> > computePeriodicPoissonRHS(MultiTensorField3D<T,3>& velocity, Box3D const& domain)
{
std::auto_ptr<MultiScalarField3D<T> > ux = extractComponent(velocity, domain, 0);
ux->periodicity().toggleAll(true);
std::auto_ptr<MultiScalarField3D<T> > uy = extractComponent(velocity, domain, 1);
uy->periodicity().toggleAll(true);
std::auto_ptr<MultiScalarField3D<T> > uz = extractComponent(velocity, domain, 2);
uz->periodicity().toggleAll(true);
std::auto_ptr<MultiScalarField3D<T> > dx_ux = computeXperiodicDerivative(*ux, domain);
std::auto_ptr<MultiScalarField3D<T> > dy_ux = computeYperiodicDerivative(*ux, domain);
std::auto_ptr<MultiScalarField3D<T> > dz_ux = computeZperiodicDerivative(*ux, domain);
std::auto_ptr<MultiScalarField3D<T> > dx_uy = computeXperiodicDerivative(*uy, domain);
std::auto_ptr<MultiScalarField3D<T> > dy_uy = computeYperiodicDerivative(*uy, domain);
std::auto_ptr<MultiScalarField3D<T> > dz_uy = computeZperiodicDerivative(*uy, domain);
std::auto_ptr<MultiScalarField3D<T> > dx_uz = computeXperiodicDerivative(*uz, domain);
std::auto_ptr<MultiScalarField3D<T> > dy_uz = computeYperiodicDerivative(*uz, domain);
std::auto_ptr<MultiScalarField3D<T> > dz_uz = computeZperiodicDerivative(*uz, domain);
std::auto_ptr<MultiScalarField3D<T> > term1 = multiply(*dx_ux, *dx_ux, domain);
std::auto_ptr<MultiScalarField3D<T> > term2 = multiply(*dy_uy, *dy_uy, domain);
std::auto_ptr<MultiScalarField3D<T> > term3 = multiply(*dz_uz, *dz_uz, domain);
std::auto_ptr<MultiScalarField3D<T> > term4 = multiply((T)2, *multiply(*dx_uy, *dy_ux, domain), domain);
std::auto_ptr<MultiScalarField3D<T> > term5 = multiply((T)2, *multiply(*dx_uz, *dz_ux, domain), domain);
std::auto_ptr<MultiScalarField3D<T> > term6 = multiply((T)2, *multiply(*dy_uz, *dz_uy, domain), domain);
std::auto_ptr<MultiScalarField3D<T> > rhs = add(*term6, *add(*term5, *add(*term4, *add(*term1, *add(*term2, *term3)))));
return rhs;
}
template<typename T>
std::auto_ptr<MultiScalarField3D<T> > computePeriodicPoissonRHS(MultiTensorField3D<T,3>& velocity) {
return computePeriodicPoissonRHS(velocity, velocity.getBoundingBox());
}
template<typename T>
void periodicPoissonIterate(MultiScalarField3D<T>& oldPressure, MultiScalarField3D<T>& newPressure,
MultiScalarField3D<T>& rhs, T beta, Box3D const& domain)
{
std::vector<MultiScalarField3D<T>* > fields;
fields.push_back(&oldPressure);
fields.push_back(&newPressure);
fields.push_back(&rhs);
applyProcessingFunctional (
new BoxPeriodicPoissonIteration3D<T>(beta), domain, fields );
}
} // namespace plb
#endif // FINITE_DIFFERENCE_WRAPPER_3D_HH
|