This file is indexed.

/usr/include/palabos/finiteDifference/fdWrapper2D.hh is in libplb-dev 1.5~r1+repack1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
/* This file is part of the Palabos library.
 *
 * Copyright (C) 2011-2015 FlowKit Sarl
 * Route d'Oron 2
 * 1010 Lausanne, Switzerland
 * E-mail contact: contact@flowkit.com
 *
 * The most recent release of Palabos can be downloaded at 
 * <http://www.palabos.org/>
 *
 * The library Palabos is free software: you can redistribute it and/or
 * modify it under the terms of the GNU Affero General Public License as
 * published by the Free Software Foundation, either version 3 of the
 * License, or (at your option) any later version.
 *
 * The library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Affero General Public License for more details.
 *
 * You should have received a copy of the GNU Affero General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
*/

/** \file
 * Helper functions for domain initialization -- header file.
 */
#ifndef FINITE_DIFFERENCE_WRAPPER_2D_HH
#define FINITE_DIFFERENCE_WRAPPER_2D_HH

#include "finiteDifference/fdWrapper2D.h"
#include "finiteDifference/fdFunctional2D.h"
#include "atomicBlock/reductiveDataProcessorWrapper2D.h"
#include "atomicBlock/dataProcessorWrapper2D.h"
#include "multiBlock/reductiveMultiDataProcessorWrapper2D.h"
#include "multiBlock/multiDataProcessorWrapper2D.h"
#include "multiGrid/gridConversion2D.h"


namespace plb {

template<typename T>
void computeXderivative(MultiScalarField2D<T>& value, MultiScalarField2D<T>& derivative, Box2D const& domain) {
    plint boundaryWidth = 1;
    applyProcessingFunctional (
            new BoxXderivativeFunctional2D<T>, domain, value, derivative, boundaryWidth );
}

template<typename T>
std::auto_ptr<MultiScalarField2D<T> > computeXderivative(MultiScalarField2D<T>& value, Box2D const& domain) {
    MultiScalarField2D<T>* derivative = new MultiScalarField2D<T>(value, domain);
    computeXderivative(value, *derivative, domain);
    return std::auto_ptr<MultiScalarField2D<T> >(derivative);
}

template<typename T>
std::auto_ptr<MultiScalarField2D<T> > computeXderivative(MultiScalarField2D<T>& value) {
    return computeXderivative(value, value.getBoundingBox());
}


template<typename T>
void computeYderivative(MultiScalarField2D<T>& value, MultiScalarField2D<T>& derivative, Box2D const& domain) {
    plint boundaryWidth = 1;
    applyProcessingFunctional (
            new BoxYderivativeFunctional2D<T>, domain, value, derivative, boundaryWidth );
}

template<typename T>
std::auto_ptr<MultiScalarField2D<T> > computeYderivative(MultiScalarField2D<T>& value, Box2D const& domain) {
    MultiScalarField2D<T>* derivative = new MultiScalarField2D<T>(value, domain);
    computeYderivative(value, *derivative, domain);
    return std::auto_ptr<MultiScalarField2D<T> >(derivative);
}

template<typename T>
std::auto_ptr<MultiScalarField2D<T> > computeYderivative(MultiScalarField2D<T>& value) {
    return computeYderivative(value, value.getBoundingBox());
}

template<typename T>
void computeGradientNorm(MultiScalarField2D<T>& value, MultiScalarField2D<T>& derivative, Box2D const& domain) {
    plint boundaryWidth = 1;
    applyProcessingFunctional (
            new BoxGradientNormFunctional2D<T>, domain, value, derivative, boundaryWidth );
}

template<typename T>
std::auto_ptr<MultiScalarField2D<T> > computeGradientNorm(MultiScalarField2D<T>& value, Box2D const& domain) {
    MultiScalarField2D<T>* derivative = new MultiScalarField2D<T>(value, domain);
    computeGradientNorm(value, *derivative, domain);
    return std::auto_ptr<MultiScalarField2D<T> >(derivative);
}

template<typename T>
std::auto_ptr<MultiScalarField2D<T> > computeGradientNorm(MultiScalarField2D<T>& value) {
    return computeGradientNorm(value, value.getBoundingBox());
}


template<typename T>
std::auto_ptr<MultiScalarField2D<T> > computePoissonRHS(MultiTensorField2D<T,2>& velocity, Box2D const& domain)
{
    std::auto_ptr<MultiScalarField2D<T> > ux = extractComponent(velocity, domain, 0);
    std::auto_ptr<MultiScalarField2D<T> > uy = extractComponent(velocity, domain, 1);

    std::auto_ptr<MultiScalarField2D<T> > dx_ux = computeXderivative(*ux, domain);
    std::auto_ptr<MultiScalarField2D<T> > dy_ux = computeYderivative(*ux, domain);
    std::auto_ptr<MultiScalarField2D<T> > dx_uy = computeXderivative(*uy, domain);
    std::auto_ptr<MultiScalarField2D<T> > dy_uy = computeYderivative(*uy, domain);

    std::auto_ptr<MultiScalarField2D<T> > term1 = multiply(*dx_ux, *dx_ux, domain);
    std::auto_ptr<MultiScalarField2D<T> > term2 = multiply((T)2, *multiply(*dx_uy, *dy_ux, domain), domain);
    std::auto_ptr<MultiScalarField2D<T> > term3 = multiply(*dy_uy, *dy_uy, domain);

    std::auto_ptr<MultiScalarField2D<T> > rhs = add(*term1, *add(*term2, *term3));
    return rhs;
}

template<typename T>
std::auto_ptr<MultiScalarField2D<T> > computePoissonRHS(MultiTensorField2D<T,2>& velocity) {
    return computePoissonRHS(velocity, velocity.getBoundingBox());
}

template<typename T>
void poissonIterate(MultiScalarField2D<T>& oldPressure, MultiScalarField2D<T>& newPressure,
                    MultiScalarField2D<T>& rhs, T beta, Box2D const& domain)
{
    std::vector<MultiScalarField2D<T>* > fields;
    fields.push_back(&oldPressure);
    fields.push_back(&newPressure);
    fields.push_back(&rhs);
    plint boundaryWidth=1;
    applyProcessingFunctional (
            new BoxPoissonIteration2D<T>(beta), domain, fields, boundaryWidth );
}

template<typename T>
T computePoissonResidue(MultiScalarField2D<T>& pressure, MultiScalarField2D<T>& rhs, Box2D const& domain) {
    BoxPoissonResidueFunctional2D<T> functional;
    applyProcessingFunctional(functional, domain, pressure, rhs);
    return functional.getMaxResidue();
}

/* ************ Wrapper for one Jacobi iteration *************** */
template<typename T> 
void JacobiIteration( MultiScalarField2D<T>& u_h, MultiScalarField2D<T>& new_u_h,
                      MultiScalarField2D<T>& rhs, Box2D const& domain ){
    
    std::vector<MultiScalarField2D<T>* > fields;
    fields.push_back(&u_h);
    fields.push_back(&new_u_h);
    fields.push_back(&rhs);
    plint boundaryWidth=1;
    applyProcessingFunctional (
            new JacobiIteration2D<T>(), domain, fields, boundaryWidth );

}

/* ************ Wrapper for one Gauss-Seidel iteration *************** */
template<typename T> 
void GaussSeidelIteration( MultiScalarField2D<T>& u_h, MultiScalarField2D<T>& jacobi_u_h,
                           MultiScalarField2D<T>& new_u_h, MultiScalarField2D<T>& rhs, Box2D const& domain )
{
    std::vector<MultiScalarField2D<T>* > fields;
    fields.push_back(&u_h);
    fields.push_back(&jacobi_u_h);
    fields.push_back(&new_u_h);
    fields.push_back(&rhs);
    plint boundaryWidth=1;
    applyProcessingFunctional (
            new GaussSeidelIteration2D<T>(), domain, fields, boundaryWidth );
}

/* ************ Wrapper for Gauss-Seidel defect computation *************** */
template<typename T> 
MultiScalarField2D<T>* computeGaussSeidelDefect(MultiScalarField2D<T>& u_h, MultiScalarField2D<T>& rhs, 
                                                Box2D const& domain)
{
    MultiScalarField2D<T>* residual = new MultiScalarField2D<T>(u_h);
    std::vector<MultiScalarField2D<T>* > fields;
    fields.push_back(&u_h);
    fields.push_back(residual);
    fields.push_back(&rhs);
    plint boundaryWidth=1;
    applyProcessingFunctional (
            new GaussSeidelDefect2D<T>(), domain, fields,boundaryWidth);
            
    return residual;
} 

template<typename T>
T computeEuclidianNorm(MultiScalarField2D<T>& matrix, Box2D const& domain){
    T av = computeAverage( *multiply(matrix,matrix),domain);
    return std::sqrt(av);
}


/* ************ Gauss-Seidel Solver *************** */
template<typename T>
void GaussSeidelSolver( MultiScalarField2D<T>& initialValue,
                        MultiScalarField2D<T>& result,
                        MultiScalarField2D<T>& rhs, Box2D const& domain, T tolerance, plint maxIter )
{
    T originalNorm;
    T newNorm;
    plint infoIt=100;
    
    // to contain the Jacobi result
    MultiScalarField2D<T> jacobiValue(initialValue); 
    jacobiValue.reset();
    
    // computation of the initial residual. We will stop when currentResidual=tolerance*initialResidual
    // or when we have made maxIter iterations
    MultiScalarField2D<T>* defect = computeGaussSeidelDefect<T>(initialValue, rhs, domain);
    originalNorm = computeEuclidianNorm<T>(*defect, domain);
    delete defect;

    // MAIN LOOP
    for (plint iT=0; iT<maxIter; ++iT){
        // use one Jacobi iteration
        JacobiIteration<T>(initialValue, jacobiValue, rhs, domain);
        
        // with this jacobiValue, make one gauss-sidel iteration (eliminate the asynchronie for parallelism)
        GaussSeidelIteration<T>(initialValue, jacobiValue, result, rhs, domain);
        
        // compute the new residual norm to know if we continue
        defect = computeGaussSeidelDefect<T>(result, rhs, domain);
        newNorm = computeEuclidianNorm<T>(*defect, domain);
        delete defect;
        
        if (newNorm < tolerance*originalNorm) 
        {
            pcout << "Gauss-Seidel iterations: " << iT << std::endl;
            break;
        }
        
        // result becomes the new initial value
        result.swap(initialValue);
        
        if (iT%infoIt==0 && iT>0){
            pcout << "Gauss-Seidel iteration " << iT << " : error=" << newNorm/originalNorm 
                  << " : NORM=" << newNorm << std::endl;
        }
    }
    pcout << "Gauss-Seidel iterations: " << maxIter << std::endl;
}

/* ************ MultiGrid method *************** */
/// Iterate Gauss-Sidel for a given number of iterations
template<typename T>
MultiScalarField2D<T>* smooth( MultiScalarField2D<T>& initialValue, 
                               MultiScalarField2D<T>& rhs, Box2D const& domain,
                               plint smoothIters){
    // create the solution for Jacobi
    MultiScalarField2D<T> jacobiValue(initialValue); 
    jacobiValue.reset();
    
    // copy initialValue
    MultiScalarField2D<T> initialCopy(initialValue);
    // the result holder
    MultiScalarField2D<T>* newValue = new MultiScalarField2D<T>(initialValue);
    
    // iteration over the original system: one Jacobi + one Gauss-Seidel
    plint v1 = smoothIters;
    for (plint iV1=0; iV1< v1; ++iV1){
        newValue->swap(initialCopy);
        JacobiIteration<T>(initialCopy, jacobiValue, rhs, domain);
        GaussSeidelIteration<T>(initialCopy, jacobiValue, *newValue, rhs, domain);
    }
   
    return newValue;
}

/// Iterate Gauss-Sidel and then interpolate the result (go up in the V)
template<typename T>
MultiScalarField2D<T>* smoothAndInterpolate( MultiScalarField2D<T>& initialValue, 
                                             MultiScalarField2D<T>& rhs, Box2D const& domain,
                                             plint smoothIters )
{
    // smooth
    MultiScalarField2D<T>* coarseNewValue = smooth(initialValue,rhs,domain,smoothIters);
    // interpolate
    MultiScalarField2D<T>* fineNewValue = new MultiScalarField2D<T>(*refine<T>(*coarseNewValue,1,-1,-1,-1));
    delete coarseNewValue;
    
    return fineNewValue;
}

/// Iterate Gauss-Sidel and then compute the error (the finest level in the V)
template<typename T>
MultiScalarField2D<T>* smoothAndComputeError( MultiScalarField2D<T>& initialValue, MultiScalarField2D<T>& rhs, 
                         Box2D const& domain, T& newError, plint smoothIters ){
    
    MultiScalarField2D<T>* newValue = smooth(initialValue,rhs,domain,smoothIters);
    // compute the new defect norm
    MultiScalarField2D<T>* newDefect = computeGaussSeidelDefect<T>(*newValue, rhs, domain);
    newError = computeEuclidianNorm<T>(*newDefect, domain);
    delete newDefect;
    
    return newValue;
}

/// Iterate Gauss-Sidel and then compute the defect (the last level before the coarsest grid)
template<typename T>
MultiScalarField2D<T>* smoothAndComputeCoarseDefect( MultiScalarField2D<T>& initialValue, 
                                               MultiScalarField2D<T>& rhs, Box2D const& domain,
                                               plint smoothIters ){
    
    MultiScalarField2D<T>* newValue = smooth(initialValue,rhs,domain,smoothIters);
    // compute the new defect norm
    MultiScalarField2D<T>* newDefect = computeGaussSeidelDefect<T>(*newValue, rhs, domain);
    MultiScalarField2D<T>* coarseDefect = new MultiScalarField2D<T>(*coarsen<T>(*newDefect, 1, -1,1,1));
    delete newDefect;
    
    return coarseDefect;
}

template<typename T> 
void generateRHS(MultiScalarField2D<T>& originalRHS, std::vector<MultiScalarField2D<T>* >& rhs){
    plint vectorSize = (plint) rhs.size();
    rhs[vectorSize-1] = new MultiScalarField2D<T>(originalRHS);
    for (plint iLevel=vectorSize-2; iLevel>=0; iLevel--){
        rhs[iLevel] = new MultiScalarField2D<T>( *coarsen<T>(*rhs[iLevel+1],1,-1,1,1));
    }
}

template<typename T>
T multiGridVCycle( MultiScalarField2D<T>& initialValue, MultiScalarField2D<T>& newValue,
                   MultiScalarField2D<T>& rhs, Box2D const& domain, plint depth ){
    
    
    PLB_PRECONDITION(depth>=1);
        
    // containers of the values to not lose anything
    std::vector<MultiScalarField2D<T>* > newValues(depth+1);
    std::vector<MultiScalarField2D<T>* > defects(depth+1);
    
    plint smoothIters1 = 5;
    plint smoothIters2 = 5;
    // we go down until the level before the coarsest
    newValues[depth] = smooth<T>(initialValue,rhs,initialValue.getBoundingBox(), smoothIters1);
    defects[depth]  = computeGaussSeidelDefect<T>(*newValues[depth],rhs,initialValue.getBoundingBox());
    defects[depth-1] = new MultiScalarField2D<T>(*coarsen<T>(*defects[depth],1,-1,1,1));
    *defects[depth-1] = *plb::multiply(-1.0,*defects[depth-1]);
    
    /// GOING DOWN THE V
    for (plint iLevel=depth-1; iLevel>=1; iLevel--){
        
        // create initial solution = 0
        MultiScalarField2D<T> initialSolution(*defects[iLevel]);
        initialSolution.reset();
        // smooth the new system
        newValues[iLevel] = smooth<T>( initialSolution,*defects[iLevel],
                                         initialSolution.getBoundingBox(), smoothIters1);
        MultiScalarField2D<T>* tempDefect =
            computeGaussSeidelDefect<T>(*newValues[iLevel],*defects[iLevel],newValues[iLevel]->getBoundingBox());
        defects[iLevel-1] = new 
                    MultiScalarField2D<T>(*coarsen<T>(*tempDefect,1,-1,1,1));
        *defects[iLevel-1] = *plb::multiply(-1.0,*defects[iLevel-1]); // change the sign
        delete tempDefect;
    }
    
    /// THE EDGE OF THE V
    // resolve the system exactly for the coarse system
    MultiScalarField2D<T> initialValueCoarse(*defects[0]);
    MultiScalarField2D<T> resultCoarse(*defects[0]); // container for the coarse solution to the correction scheme
    initialValueCoarse.reset(); // for the correction 0 is a good first approximation
    
    T tolerance = 1e-5;
    plint maxIter = 100;
    GaussSeidelSolver<T>( initialValueCoarse, resultCoarse,
                          *defects[0],resultCoarse.getBoundingBox(),tolerance, maxIter );

    newValues[0] = new MultiScalarField2D<T>(resultCoarse);
    // we interpolate the error computed in the coarse grid and add it to the original result from level 1
    MultiScalarField2D<T>* v_h = new MultiScalarField2D<T>(*refine<T>( *newValues[0], 1, -1 ,-1,-1));
    // compute new approximation as newValue = u_h + v_h
    *newValues[1] = *plb::add(*newValues[1],*v_h);
    delete v_h;
    
    /// GOING UP THE V
    // go up interpolating and smoothing up to the level before the finest
    for (plint iLevel=1; iLevel<depth; ++iLevel){
        MultiScalarField2D<T>* tempNewVal = smoothAndInterpolate<T>( *newValues[iLevel], *defects[iLevel], 
                                                                    newValues[iLevel]->getBoundingBox(), smoothIters2);
        *newValues[iLevel+1] = *plb::add(*newValues[iLevel+1],*tempNewVal);
        delete tempNewVal;

    }
    
    // we smooth and compute the new error in the finest level
    T newError = 0.0;
    MultiScalarField2D<T>* result = smoothAndComputeError( *newValues[depth], rhs,
                                                           newValues[depth]->getBoundingBox(),
                                                           newError, smoothIters2 );
    // copy new initial value
    newValue = *result;
    delete result;
    
    // CLEAN-UP
    for (plint iLevel = 0; iLevel <= depth; ++iLevel){
        delete newValues[iLevel];
        delete defects[iLevel];
    }
    
    return newError;
}

template<typename T>
std::vector<MultiScalarField2D<T>* > fullMultiGrid( MultiScalarField2D<T>& initialValue, 
                                                    MultiScalarField2D<T>& originalRhs, Box2D const& domain,         
                                                    plint gridLevels, plint ncycles )
{
    PLB_PRECONDITION( gridLevels>=2 && ncycles>=1 );
    
    std::vector<MultiScalarField2D<T>* > rhs(gridLevels);
    std::vector<MultiScalarField2D<T>* > solutions(gridLevels);
    
    // create all the right-hand sides from restriction over rhs
    generateRHS(originalRhs, rhs);
    
    // Initial solution computed exactly on the coarsest grid
    MultiScalarField2D<T> initialSolution(*rhs[0]);
    MultiScalarField2D<T> initialValueCoarse(*rhs[0]);
    initialValueCoarse.reset();
    GaussSeidelSolver<T>(initialValueCoarse, initialSolution, *rhs[0],initialSolution.getBoundingBox());
    solutions[0] = new MultiScalarField2D<T>(initialSolution);
    
    // MAIN LOOP (at each time we add one more level)
    for (plint iLevel=1; iLevel<gridLevels; ++iLevel){
        pcout << "Level: " << iLevel << std::endl;
        // interpolate the iLevel-1 solution
        MultiScalarField2D<T>* initialSolutionLevel = new
                MultiScalarField2D<T>( *refine<T>(*solutions[iLevel-1],1,-1,-1,-1) );
        MultiScalarField2D<T> newValue(*initialSolutionLevel);
        // for each level we itere ncycles
        for (plint iNcycle=0; iNcycle<ncycles*iLevel; ++iNcycle){
            // we use a V cycle with the current number of grids
            T error;
            error = multiGridVCycle<T>( *initialSolutionLevel, newValue, *rhs[iLevel], domain, iLevel);
            pcout << "\tError=" << error << std::endl;
            newValue.swap(*initialSolutionLevel);
        }
        
        // save the current level solution
        solutions[iLevel] = new MultiScalarField2D<T>(*initialSolutionLevel);
        delete initialSolutionLevel;        
    }
    
    // CLEAN-UP
    for (plint iLevel=0; iLevel<gridLevels; ++iLevel){
        delete rhs[iLevel];
    }
    
    return solutions;
}

template<typename T>
std::vector<MultiScalarField2D<T>* > simpleMultiGrid( MultiScalarField2D<T>& initialValue, 
                                                    MultiScalarField2D<T>& originalRhs, Box2D const& domain,         
                                                    plint gridLevels )
{
    PLB_PRECONDITION( gridLevels>=2 );
    
    std::vector<MultiScalarField2D<T>* > rhs(gridLevels);
    std::vector<MultiScalarField2D<T>* > solutions(gridLevels);
    
    // create all the right-hand sides from restriction over rhs
    generateRHS(originalRhs, rhs);
    
    // Initial solution computed exactly on the coarsest grid
    pcout << "Level: 0" << std::endl;
    pcout << "Size of the field : " << rhs[0]->getNx() << " x " << rhs[0]->getNy() << std::endl;
    MultiScalarField2D<T> initialSolution(*rhs[0]);
    MultiScalarField2D<T> initialValueCoarse(*rhs[0]);
    initialValueCoarse.reset();
    GaussSeidelSolver<T>(initialValueCoarse, initialSolution, *rhs[0],initialSolution.getBoundingBox());
    solutions[0] = new MultiScalarField2D<T>(initialSolution);
    
    // MAIN LOOP (at each time we add one more level)
    for (plint iLevel=1; iLevel<gridLevels; ++iLevel){
        pcout << "Level: " << iLevel << std::endl;
        
        // interpolate the iLevel-1 solution
        MultiScalarField2D<T>* initialSolutionLevel = new
                MultiScalarField2D<T>( *refine<T>(*solutions[iLevel-1],1,-1,-1,-1) );
        MultiScalarField2D<T> newValue(*initialSolutionLevel);
        pcout << "Size of the field : " << newValue.getNx() << " x " << newValue.getNy() << std::endl;
        GaussSeidelSolver<T>(*initialSolutionLevel, newValue, *rhs[iLevel],initialSolutionLevel->getBoundingBox());
        
        // save the current level solution
        solutions[iLevel] = new MultiScalarField2D<T>(*initialSolutionLevel);
        delete initialSolutionLevel;
    }
    
    // CLEAN-UP
    for (plint iLevel=0; iLevel<gridLevels; ++iLevel){
        delete rhs[iLevel];
    }
    
    return solutions;
}




}  // namespace plb

#endif  // FINITE_DIFFERENCE_WRAPPER_2D_HH