/usr/include/palabos/complexDynamics/carreauUnits.h is in libplb-dev 1.5~r1+repack1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 | /* This file is part of the Palabos library.
*
* Copyright (C) 2011-2015 FlowKit Sarl
* Route d'Oron 2
* 1010 Lausanne, Switzerland
* E-mail contact: contact@flowkit.com
*
* The most recent release of Palabos can be downloaded at
* <http://www.palabos.org/>
*
* The library Palabos is free software: you can redistribute it and/or
* modify it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of the
* License, or (at your option) any later version.
*
* The library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef CARREAU_UNITS_H
#define CARREAU_UNITS_H
#include "core/globalDefs.h"
#include "io/parallelIO.h"
#include <string>
#include <fstream>
/* Main author: Orestis Malaspinas
*/
namespace plb {
/// Numeric parameters for isothermal, incompressible flow.
template<typename T>
class CarreauFlowParam {
public:
/// Constructor
/** \param latticeU_ Characteristic velocity in lattice units (proportional to Mach number).
* \param Re_ Reynolds number.
* \param N_ Resolution (a lattice of size 1 has N_+1 cells).
* \param lx_ x-length in dimensionless units (e.g. 1).
* \param ly_ y-length in dimensionless units (e.g. 1).
* \param lz_ z-length in dimensionless units (e.g. 1).
*/
CarreauFlowParam(T latticeU_, T Re_, T Cu_, T nuInf_, T n_,
plint resolution_, T lx_, T ly_, T lz_=T() )
: latticeU(latticeU_), Re(Re_), Cu(Cu_), nuInf(nuInf_), n(n_),
resolution(resolution_), lx(lx_), ly(ly_), lz(lz_)
{ }
/// velocity in lattice units (proportional to Mach number)
T getLatticeU() const { return latticeU; }
/// Reynolds number
T getRe() const { return Re; }
/// Carreau number (lambda*u/L)
T getCu() const { return Cu; }
/// The exponent of the power-law
T getExponent() const { return n; }
/// resolution
plint getResolution() const { return resolution; }
/// x-length in dimensionless units
T getLx() const { return lx; }
/// y-length in dimensionless units
T getLy() const { return ly; }
/// z-length in dimensionless units
T getLz() const { return lz; }
/// lattice spacing in dimensionless units
T getDeltaX() const { return (T)1/(T)getResolution(); }
/// time step in dimensionless units
T getDeltaT() const { return getDeltaX()*getLatticeU(); }
/// conversion from dimensionless to lattice units for space coordinate
plint nCell(T l) const { return (int)(l/getDeltaX()+(T)0.5); }
/// conversion from dimensionless to lattice units for time coordinate
plint nStep(T t) const { return (int)(t/getDeltaT()+(T)0.5); }
/// number of lattice cells in x-direction
plint getNx(bool offLattice=false) const { return nCell(lx)+1+(int)offLattice; }
/// number of lattice cells in y-direction
plint getNy(bool offLattice=false) const { return nCell(ly)+1+(int)offLattice; }
/// number of lattice cells in z-direction
plint getNz(bool offLattice=false) const { return nCell(lz)+1+(int)offLattice; }
/// solvent viscosity at zero shear rate in lattice units
T getLatticeNu0() const { return getLatticeU()*getResolution()/getRe(); }
/// solvent viscosity at infinite shear rate in lattice units
T getLatticeNuInf() const { return nuInf; }
/// lambda paramter in lattice units
T getLatticeLambda() const { return getResolution()/getLatticeU()*getCu(); }
/// solvent relaxation time
T getTau0() const { return (T)3*getLatticeNu0()+(T)0.5; }
/// solvent relaxation frequency
T getOmega0() const { return (T)1 / getTau0(); }
/// solvent relaxation time
T getTauInf() const { return (T)3*getLatticeNuInf()+(T)0.5; }
/// solvent relaxation frequency
T getOmegaInf() const { return (T)1 / getTauInf(); }
private:
T latticeU, Re, Cu, nuInf, n;
plint resolution;
T lx, ly, lz;
};
template<typename T>
void writeLogFile(CarreauFlowParam<T> const& parameters,
std::string const& title)
{
std::string fullName = global::directories().getLogOutDir() + "plbLog.dat";
plb_ofstream ofile(fullName.c_str());
ofile << title << "\n\n";
ofile << "Velocity in lattice units: u=" << parameters.getLatticeU() << "\n";
ofile << "Reynolds number: Re=" << parameters.getRe() << "\n";
ofile << "Carreau number: Cu=" << parameters.getCu() << "\n";
ofile << "Lattice resolution: N=" << parameters.getResolution() << "\n";
ofile << "Extent of the system: lx=" << parameters.getLx() << "\n";
ofile << "Extent of the system: ly=" << parameters.getLy() << "\n";
ofile << "Extent of the system: lz=" << parameters.getLz() << "\n";
ofile << "Grid spacing deltaX: dx=" << parameters.getDeltaX() << "\n";
ofile << "Time step deltaT: dt=" << parameters.getDeltaT() << "\n";
ofile << "Exponent: n=" << parameters.getExponent() << "\n";
ofile << "Zero viscosity: nu0=" << parameters.getLatticeNu0() << "\n";
ofile << "Inf viscosity: nuInf=" << parameters.getLatticeNuInf() << "\n";
ofile << "Zero Omega: omega0=" << parameters.getOmega0() << "\n";
ofile << "Inf Omega: omegaInf=" << parameters.getOmegaInf() << "\n";
ofile << "Lambda: lambda=" << parameters.getLatticeLambda() << "\n";
}
} // namespace plb
#endif
|