/usr/include/palabos/complexDynamics/advectionDiffusionUnits.h is in libplb-dev 1.5~r1+repack1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 | /* This file is part of the Palabos library.
*
* Copyright (C) 2011-2015 FlowKit Sarl
* Route d'Oron 2
* 1010 Lausanne, Switzerland
* E-mail contact: contact@flowkit.com
*
* The most recent release of Palabos can be downloaded at
* <http://www.palabos.org/>
*
* The library Palabos is free software: you can redistribute it and/or
* modify it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of the
* License, or (at your option) any later version.
*
* The library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/* Main author: Orestis Malaspinas
*/
#ifndef ADVECTION_DIFFUSION_UNITS_H
#define ADVECTION_DIFFUSION_UNITS_H
#include "core/globalDefs.h"
#include "core/globalDefs.h"
#include <string>
#include <fstream>
#include <cmath>
namespace plb {
/// A useful class for the conversion between dimensionless and lattice units.
template<typename T, template<typename NSU> class nsDescriptor, template<typename ADU> class adDescriptor>
class RayleighBenardFlowParam {
public:
/// Constructor
/** \param Re_ Reynolds number
* \param Ra_ Raylegh number
* \param Pr_ Prandtl number
* \param coldTemperature_ minimum temperature
* \param hotTemperature_ maximum temperature
* \param deltaT_ time discretization number
* \param N_ resolution (a lattice of size 1 has N_+1 cells)
* \param lx_ x-length in dimensionless units (e.g. 1)
* \param ly_ y-length in dimensionless units (e.g. 1)
* \param lz_ z-length in dimensionless units (e.g. 1)
*/
RayleighBenardFlowParam(T Ra_, T Pr_, T uMax_, T coldTemperature_,
T hotTemperature_, T resolution_,
T lx_, T ly_, T lz_=T() )
: uMax(uMax_), Ra(Ra_), Pr(Pr_), coldTemperature(coldTemperature_), hotTemperature(hotTemperature_),
resolution(resolution_), lx(lx_), ly(ly_), lz(lz_)
{ }
/// Reynolds number
T getRe() const { return std::sqrt(getRa()/getPr()); }
/// Rayleigh number
T getRa() const { return Ra; }
/// Prandlt number
T getPr() const { return Pr; }
/// delta temperature number
T getColdTemperature() const { return coldTemperature; }
/// delta temperature number
T getHotTemperature() const { return hotTemperature; }
/// delta temperature number
T getDeltaTemperature() const { return (hotTemperature-coldTemperature); }
/// delta temperature number
T getAverageTemperature() const { return (hotTemperature+coldTemperature)/(T)2; }
/// resolution (a lattice of size 1 has getN()+1 cells)
T getResolution() const { return resolution; }
/// x-length in dimensionless units
T getLx() const { return lx; }
/// y-length in dimensionless units
T getLy() const { return ly; }
/// z-length in dimensionless units
T getLz() const { return lz; }
/// lattice spacing in dimensionless units
T getDeltaX() const { return (T)1/resolution; }
/// time step in dimensionless units
T getDeltaT() const { return getLatticeU() / (T)resolution; }
/// conversion from dimensionless to lattice units for space coordinate
plint nCell(T l) const { return (plint)(l/getDeltaX()+(T)0.5); }
/// conversion from dimensionless to lattice units for time coordinate
plint nStep(T t) const { return (plint)(t/getDeltaT()+(T)0.5); }
/// number of lattice cells in x-direction
plint getNx() const { return nCell(lx)+1; }
/// number of lattice cells in y-direction
plint getNy() const { return nCell(ly)+1; }
/// number of lattice cells in z-direction
plint getNz() const { return nCell(lz)+1; }
/// velocity in lattice units (proportional to Mach number)
T getLatticeU() const { return uMax ; }
/// viscosity in lattice units
T getLatticeNu() const { return getDeltaT()/(getDeltaX()*getDeltaX()*getRe()); }
/// thermal conductivity in lattice units
T getLatticeKappa() const { return getLatticeNu() / getPr() ; }
/// viscosity in lattice units
T getLatticeGravity() const { return getDeltaT() * getDeltaT() / getDeltaX(); }
/// relaxation time
T getSolventTau() const { return nsDescriptor<T>::invCs2*getLatticeNu()+(T)0.5; }
/// relaxation frequency
T getSolventOmega() const { return (T)1 / getSolventTau(); }
/// relaxation time
T getTemperatureTau() const { return adDescriptor<T>::invCs2*getLatticeKappa()+(T)0.5; }
/// relaxation frequency
T getTemperatureOmega() const { return (T)1 / getTemperatureTau(); }
private:
T uMax, Ra, Pr, coldTemperature, hotTemperature, resolution, lx, ly, lz;
};
template<typename T, template<typename NSU> class nsDescriptor, template<typename ADU> class adDescriptor>
void writeLogFile(RayleighBenardFlowParam<T,nsDescriptor,adDescriptor> const& parameters,
std::string const& title)
{
std::string fullName = global::directories().getLogOutDir() + "olbLog.dat";
std::ofstream ofile(fullName.c_str());
ofile << title << "\n\n";
ofile << "Reynolds number: Re=" << parameters.getRe() << "\n";
ofile << "Raynleigh number: Ra=" << parameters.getRa() << "\n";
ofile << "Prandlt number: Pr=" << parameters.getPr() << "\n";
ofile << "Kinematic viscosity: Nu=" << parameters.getLatticeNu() << "\n";
ofile << "Thermal conductivity: Kappa=" << parameters.getLatticeKappa() << "\n";
ofile << "Lattice resolution: N=" << parameters.getResolution() << "\n";
ofile << "Extent of the system: lx=" << parameters.getLx() << "\n";
ofile << "Extent of the system: ly=" << parameters.getLy() << "\n";
ofile << "Extent of the system: lz=" << parameters.getLz() << "\n";
ofile << "Grid spacing deltaX: dx=" << parameters.getDeltaX() << "\n";
ofile << "Time step deltaT: dt=" << parameters.getDeltaT() << "\n";
ofile << "Solvent omega: omega_S=" << parameters.getSolventOmega() << "\n";
ofile << "Temperature omega: omega_T=" << parameters.getTemperatureOmega() << "\n";
ofile << "Caracteristic vel: uMax=" << parameters.getLatticeU() << "\n";
}
} // namespace plb
#endif
|