This file is indexed.

/usr/include/palabos/complexDynamics/advectionDiffusionUnits.h is in libplb-dev 1.5~r1+repack1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
/* This file is part of the Palabos library.
 *
 * Copyright (C) 2011-2015 FlowKit Sarl
 * Route d'Oron 2
 * 1010 Lausanne, Switzerland
 * E-mail contact: contact@flowkit.com
 *
 * The most recent release of Palabos can be downloaded at 
 * <http://www.palabos.org/>
 *
 * The library Palabos is free software: you can redistribute it and/or
 * modify it under the terms of the GNU Affero General Public License as
 * published by the Free Software Foundation, either version 3 of the
 * License, or (at your option) any later version.
 *
 * The library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Affero General Public License for more details.
 *
 * You should have received a copy of the GNU Affero General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
*/

/* Main author: Orestis Malaspinas
 */

#ifndef ADVECTION_DIFFUSION_UNITS_H
#define ADVECTION_DIFFUSION_UNITS_H

#include "core/globalDefs.h"
#include "core/globalDefs.h"
#include <string>
#include <fstream>
#include <cmath>

namespace plb {

/// A useful class for the conversion between dimensionless and lattice units.
template<typename T, template<typename NSU> class nsDescriptor, template<typename ADU> class adDescriptor>
class RayleighBenardFlowParam {
public:
    /// Constructor
    /** \param Re_  Reynolds number
     * \param Ra_  Raylegh number
     *  \param Pr_  Prandtl number
     *  \param coldTemperature_  minimum temperature
     *  \param hotTemperature_  maximum temperature
     *  \param deltaT_ time discretization number
     *  \param N_  resolution (a lattice of size 1 has N_+1 cells)
     *  \param lx_ x-length in dimensionless units (e.g. 1)
     *  \param ly_ y-length in dimensionless units (e.g. 1)
     *  \param lz_ z-length in dimensionless units (e.g. 1)
     */
    RayleighBenardFlowParam(T Ra_, T Pr_, T uMax_, T coldTemperature_, 
                            T hotTemperature_, T resolution_,
                            T lx_, T ly_, T lz_=T() )
        : uMax(uMax_), Ra(Ra_), Pr(Pr_), coldTemperature(coldTemperature_), hotTemperature(hotTemperature_),
          resolution(resolution_), lx(lx_), ly(ly_), lz(lz_)
    { }
    /// Reynolds number
    T getRe() const      { return std::sqrt(getRa()/getPr()); }
    /// Rayleigh number
    T getRa() const      { return Ra; }
    /// Prandlt number
    T getPr() const      { return Pr; }
    /// delta temperature number
    T getColdTemperature() const   { return coldTemperature; }
    /// delta temperature number
    T getHotTemperature() const    { return hotTemperature; }
    /// delta temperature number
    T getDeltaTemperature() const { return (hotTemperature-coldTemperature); }
    /// delta temperature number
    T getAverageTemperature() const      { return (hotTemperature+coldTemperature)/(T)2; }
    /// resolution (a lattice of size 1 has getN()+1 cells)
    T getResolution() const { return resolution; }
    /// x-length in dimensionless units
    T getLx() const      { return lx; }
    /// y-length in dimensionless units
    T getLy() const      { return ly; }
    /// z-length in dimensionless units
    T getLz() const      { return lz; }
    /// lattice spacing in dimensionless units
    T getDeltaX() const  { return (T)1/resolution; }
    /// time step in dimensionless units
    T getDeltaT() const  { return getLatticeU() / (T)resolution; }
    /// conversion from dimensionless to lattice units for space coordinate
    plint nCell(T l) const { return (plint)(l/getDeltaX()+(T)0.5); }
    /// conversion from dimensionless to lattice units for time coordinate
    plint nStep(T t) const { return (plint)(t/getDeltaT()+(T)0.5); }
    /// number of lattice cells in x-direction
    plint getNx() const    { return nCell(lx)+1; }
    /// number of lattice cells in y-direction
    plint getNy() const    { return nCell(ly)+1; }
    /// number of lattice cells in z-direction
    plint getNz() const    { return nCell(lz)+1; }
    /// velocity in lattice units (proportional to Mach number)
    T getLatticeU() const       { return uMax  ; }
    /// viscosity in lattice units
    T getLatticeNu() const      { return getDeltaT()/(getDeltaX()*getDeltaX()*getRe()); }
    /// thermal conductivity in lattice units
    T getLatticeKappa() const   { return getLatticeNu() / getPr() ; }
    /// viscosity in lattice units
    T getLatticeGravity() const { return getDeltaT() * getDeltaT() / getDeltaX(); }
    /// relaxation time
    T getSolventTau() const   { return nsDescriptor<T>::invCs2*getLatticeNu()+(T)0.5; }
    /// relaxation frequency
    T getSolventOmega() const { return (T)1 / getSolventTau(); }
    /// relaxation time
    T getTemperatureTau() const    { return adDescriptor<T>::invCs2*getLatticeKappa()+(T)0.5; }
    /// relaxation frequency
    T getTemperatureOmega() const  { return (T)1 / getTemperatureTau(); }
private:
    T uMax, Ra, Pr, coldTemperature, hotTemperature, resolution, lx, ly, lz;
};

template<typename T, template<typename NSU> class nsDescriptor, template<typename ADU> class adDescriptor>
void writeLogFile(RayleighBenardFlowParam<T,nsDescriptor,adDescriptor> const& parameters,
                  std::string const& title)
{
    std::string fullName = global::directories().getLogOutDir() + "olbLog.dat";
    std::ofstream ofile(fullName.c_str());
    ofile << title << "\n\n";
    ofile << "Reynolds number:           Re=" << parameters.getRe() << "\n";
    ofile << "Raynleigh number:          Ra=" << parameters.getRa() << "\n";
    ofile << "Prandlt number:            Pr=" << parameters.getPr() << "\n";
    ofile << "Kinematic viscosity:       Nu=" << parameters.getLatticeNu() << "\n";
    ofile << "Thermal conductivity:   Kappa=" << parameters.getLatticeKappa() << "\n";
    ofile << "Lattice resolution:         N=" << parameters.getResolution() << "\n";
    ofile << "Extent of the system:      lx=" << parameters.getLx() << "\n";
    ofile << "Extent of the system:      ly=" << parameters.getLy() << "\n";
    ofile << "Extent of the system:      lz=" << parameters.getLz() << "\n";
    ofile << "Grid spacing deltaX:       dx=" << parameters.getDeltaX() << "\n";
    ofile << "Time step deltaT:          dt=" << parameters.getDeltaT() << "\n";
    ofile << "Solvent omega:        omega_S=" << parameters.getSolventOmega() << "\n";
    ofile << "Temperature omega:    omega_T=" << parameters.getTemperatureOmega() << "\n";
    ofile << "Caracteristic vel:       uMax=" << parameters.getLatticeU() << "\n";
}

}  // namespace plb

#endif