/usr/include/palabos/complexDynamics/advectionDiffusionDynamics.h is in libplb-dev 1.5~r1+repack1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 | /* This file is part of the Palabos library.
*
* Copyright (C) 2011-2015 FlowKit Sarl
* Route d'Oron 2
* 1010 Lausanne, Switzerland
* E-mail contact: contact@flowkit.com
*
* The most recent release of Palabos can be downloaded at
* <http://www.palabos.org/>
*
* The library Palabos is free software: you can redistribute it and/or
* modify it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of the
* License, or (at your option) any later version.
*
* The library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/* Main author: Orestis Malaspinas
*/
/** \file
* A collection of dynamics classes (e.g. BGK) with which a Cell object
* can be instantiated -- header file.
*/
#ifndef ADVECTION_DIFFUSION_DYNAMICS_H
#define ADVECTION_DIFFUSION_DYNAMICS_H
#include "core/globalDefs.h"
#include "core/dynamics.h"
namespace plb {
/// Common base iso-thermal (or athermal) bulk dynamics
template<typename T, template<typename U> class Descriptor>
class AdvectionDiffusionDynamics : public BasicBulkDynamics<T,Descriptor> {
public:
AdvectionDiffusionDynamics(T omega_);
/* *************** Collision, Equilibrium, and Non-equilibrium ******* */
/// Re-compute particle populations from the leading moments
virtual void regularize(Cell<T,Descriptor>& cell, T rhoBar, Array<T,Descriptor<T>::d> const& j,
T jSqr, Array<T,SymmetricTensor<T,Descriptor>::n> const& PiNeq, T thetaBar=T() ) const;
/* *************** Additional moments, intended for internal use ***** */
/// Returns 0, as a default value for isothermal flow.
virtual T computeEbar(Cell<T,Descriptor> const& cell) const;
/* *************** Switch between population and moment representation ****** */
/// Number of variables required to decompose a population representation into moments.
virtual plint numDecomposedVariables(plint order) const {PLB_ASSERT(false); return 0; }
/// Decompose from population representation into moment representation.
virtual void decompose(Cell<T,Descriptor> const& cell, std::vector<T>& rawData, plint order) const { PLB_ASSERT(false);}
/// Recompose from moment representation to population representation.
virtual void recompose(Cell<T,Descriptor>& cell, std::vector<T> const& rawData, plint order) const {PLB_ASSERT(false); }
/// Change the space and time scales of the variables in moment representation.
virtual void rescale(std::vector<T>& rawData, T xDxInv, T xDt, plint order) const { PLB_ASSERT(false);}
};
/// Regularized Advection-Diffusion dynamics
/** It uses the regularized approximation that can be found in
* the thesis of J. Latt (2007).
*/
template<typename T, template<typename U> class Descriptor>
class AdvectionDiffusionRLBdynamics : public AdvectionDiffusionDynamics <T,Descriptor> {
public:
/// Constructor
AdvectionDiffusionRLBdynamics(T omega_);
/// Clone the object on its dynamic type.
virtual AdvectionDiffusionRLBdynamics<T,Descriptor>* clone() const;
/// Return a unique ID for this class.
virtual int getId() const;
/// Collision step
virtual void collide(Cell<T,Descriptor>& cell,
BlockStatistics& statistics );
/// Implementation of the collision step, with imposed macroscopic variables
/// The arguments:
/// - rhoBar: the "rhoBar" version of the scalar rho.
/// - jEq: the equilibrium part of the second-order moment. jEq = u*rho, where u is the external convective term.
virtual void collideExternal (
Cell<T,Descriptor>& cell, T rhoBar,
Array<T,Descriptor<T>::d> const& jEq, T thetaBar, BlockStatistics& stat );
/// Compute equilibrium distribution function
virtual T computeEquilibrium(plint iPop, T rhoBar, Array<T,Descriptor<T>::d> const& j,
T jSqr, T thetaBar=T()) const;
private:
static int id;
};
template<typename T, template<typename U> class Descriptor>
class AdvectionDiffusionWithSourceRLBdynamics : public AdvectionDiffusionDynamics <T,Descriptor> {
public:
/// Constructor
AdvectionDiffusionWithSourceRLBdynamics(T omega_);
/// Clone the object on its dynamic type.
virtual AdvectionDiffusionWithSourceRLBdynamics<T,Descriptor>* clone() const;
/// Return a unique ID for this class.
virtual int getId() const;
/// Collision step
virtual void collide(Cell<T,Descriptor>& cell,
BlockStatistics& statistics );
/// Implementation of the collision step, with imposed macroscopic variables
/// The arguments:
/// - rhoBar: the "rhoBar" version of the scalar rho.
/// - jEq: the equilibrium part of the second-order moment. jEq = u*rho, where u is the external convective term.
virtual void collideExternal (
Cell<T,Descriptor>& cell, T rhoBar,
Array<T,Descriptor<T>::d> const& jEq, T thetaBar, BlockStatistics& stat );
/// Compute equilibrium distribution function
virtual T computeEquilibrium(plint iPop, T rhoBar, Array<T,Descriptor<T>::d> const& j,
T jSqr, T thetaBar=T()) const;
private:
static int id;
};
/// Regularized Advection-Diffusion dynamics with artificial diffusivity as in the Smagorinsky model.
template<typename T, template<typename U> class Descriptor>
class SmagorinskyAdvectionDiffusionRLBdynamics : public AdvectionDiffusionDynamics <T,Descriptor> {
public:
/// Constructor
SmagorinskyAdvectionDiffusionRLBdynamics(T omega_, T T0_, T cSmago_);
/// Constructor from a serialized object.
SmagorinskyAdvectionDiffusionRLBdynamics(HierarchicUnserializer& unserializer);
/// Clone the object on its dynamic type.
virtual SmagorinskyAdvectionDiffusionRLBdynamics<T,Descriptor>* clone() const;
/// Return a unique ID for this class.
virtual int getId() const;
/// Serialize the dynamics object.
virtual void serialize(HierarchicSerializer& serializer) const;
/// Un-Serialize the dynamics object.
virtual void unserialize(HierarchicUnserializer& unserializer);
/// Collision step
virtual void collide(Cell<T,Descriptor>& cell,
BlockStatistics& statistics );
/// Implementation of the collision step, with imposed macroscopic variables
/// The arguments:
/// - rhoBar: the "rhoBar" version of the scalar rho.
/// - jEq: the equilibrium part of the second-order moment. jEq = u*rho, where u is the external convective term.
virtual void collideExternal (
Cell<T,Descriptor>& cell, T rhoBar,
Array<T,Descriptor<T>::d> const& jEq, T thetaBar, BlockStatistics& stat );
/// Compute equilibrium distribution function
virtual T computeEquilibrium(plint iPop, T rhoBar, Array<T,Descriptor<T>::d> const& j,
T jSqr, T thetaBar=T()) const;
private:
T invT0;
T cSmago;
static int id;
};
/// BGK Advection-Diffusion dynamics
/** This approach contains a slight error in the diffusion
* term.
*/
template<typename T, template<typename U> class Descriptor>
class AdvectionDiffusionBGKdynamics : public AdvectionDiffusionDynamics <T,Descriptor> {
public:
/// Constructor
AdvectionDiffusionBGKdynamics(T omega_);
/// Clone the object on its dynamic type.
virtual AdvectionDiffusionBGKdynamics<T,Descriptor>* clone() const;
/// Return a unique ID for this class.
virtual int getId() const;
/// Collision step
virtual void collide(Cell<T,Descriptor>& cell,
BlockStatistics& statistics );
/// Implementation of the collision step, with imposed macroscopic variables
/// The arguments:
/// - rhoBar: the "rhoBar" version of the scalar rho.
/// - j: the equilibrium part of the second-order moment. j = u*rho, where u is the external convective term.
virtual void collideExternal (
Cell<T,Descriptor>& cell, T rhoBar,
Array<T,Descriptor<T>::d> const& j, T thetaBar, BlockStatistics& stat );
/// Compute equilibrium distribution function
virtual T computeEquilibrium(plint iPop, T rhoBar, Array<T,Descriptor<T>::d> const& j,
T jSqr, T thetaBar=T()) const;
/* *************** Switch between population and moment representation ****** */
/// Number of variables required to decompose a population representation into moments.
virtual plint numDecomposedVariables(plint order) const { return 0; }
/// Decompose from population representation into moment representation.
virtual void decompose(Cell<T,Descriptor> const& cell, std::vector<T>& rawData, plint order) const {
PLB_ASSERT(false);
}
/// Recompose from moment representation to population representation.
virtual void recompose(Cell<T,Descriptor>& cell, std::vector<T> const& rawData, plint order) const {
PLB_ASSERT(false);
}
/// Change the space and time scales of the variables in moment representation.
virtual void rescale(std::vector<T>& rawData, T xDxInv, T xDt, plint order) const {
PLB_ASSERT(false);
}
private:
static int id;
};
/// Complete BGK Advection-Diffusion dynamics
/** This approach contains a slight error in the diffusion
* term. We tried to reduce it with the extended exquilibrium distribution
*/
template<typename T, template<typename U> class Descriptor>
class CompleteAdvectionDiffusionBGKdynamics : public AdvectionDiffusionDynamics <T,Descriptor> {
public:
/// Constructor
CompleteAdvectionDiffusionBGKdynamics(T omega_);
/// Clone the object on its dynamic type.
virtual CompleteAdvectionDiffusionBGKdynamics<T,Descriptor>* clone() const;
/// Return a unique ID for this class.
virtual int getId() const;
/// Computation of the density field (sum_i f_i = rho*phi), phi is the advected diffused field
/// rho the density of the fluid
virtual T computeDensity(Cell<T,Descriptor> const& cell) const;
/// Collision step
virtual void collide(Cell<T,Descriptor>& cell,
BlockStatistics& statistics );
/// Implementation of the collision step, with imposed macroscopic variables
/// The arguments:
/// - rhoBar: the "rhoBar" version of the scalar rho.
/// - j: the equilibrium part of the second-order moment. j = u*rho, where u is the external convective term.
virtual void collideExternal (
Cell<T,Descriptor>& cell, T rhoBar,
Array<T,Descriptor<T>::d> const& j, T thetaBar, BlockStatistics& stat );
/// Compute equilibrium distribution function
virtual T computeEquilibrium(plint iPop, T rhoBar, Array<T,Descriptor<T>::d> const& j,
T jSqr, T thetaBar=T()) const;
/* *************** Switch between population and moment representation ****** */
/*
/// Number of variables required to decompose a population representation into moments.
virtual plint numDecomposedVariables(plint order) const;
/// Decompose from population representation into moment representation.
virtual void decompose(Cell<T,Descriptor> const& cell, std::vector<T>& rawData, plint order) const;
/// Recompose from moment representation to population representation.
virtual void recompose(Cell<T,Descriptor>& cell, std::vector<T> const& rawData, plint order) const;*/
/// Re-compute particle populations from the leading moments
virtual void regularize(Cell<T,Descriptor>& cell, T rhoBar, Array<T,Descriptor<T>::d> const& j,
T jSqr, Array<T,SymmetricTensor<T,Descriptor>::n> const& PiNeq, T thetaBar=T() ) const;
private:
static int id;
};
/// Complete TRT Advection-Diffusion dynamics
/** This approach contains a slight error in the diffusion
* term. We tried to reduce it with the extended exquilibrium distribution
*/
template<typename T, template<typename U> class Descriptor>
class CompleteAdvectionDiffusionTRTdynamics : public AdvectionDiffusionDynamics <T,Descriptor> {
public:
/// Constructor
CompleteAdvectionDiffusionTRTdynamics(T omega_, T psi_);
CompleteAdvectionDiffusionTRTdynamics(T omega_);
/// Clone the object on its dynamic type.
virtual CompleteAdvectionDiffusionTRTdynamics<T,Descriptor>* clone() const;
/// Return a unique ID for this class.
virtual int getId() const;
/// Serialize the dynamics object.
virtual void serialize(HierarchicSerializer& serializer) const;
/// Un-Serialize the dynamics object.
virtual void unserialize(HierarchicUnserializer& unserializer);
/// Computation of the density field (sum_i f_i = rho*phi), phi is the advected diffused field
/// rho the density of the fluid
virtual T computeDensity(Cell<T,Descriptor> const& cell) const;
/// Collision step
virtual void collide(Cell<T,Descriptor>& cell,
BlockStatistics& statistics );
/// Implementation of the collision step, with imposed macroscopic variables
/// The arguments:
/// - rhoBar: the "rhoBar" version of the scalar rho.
/// - j: the equilibrium part of the second-order moment. j = u*rho, where u is the external convective term.
virtual void collideExternal (
Cell<T,Descriptor>& cell, T rhoBar,
Array<T,Descriptor<T>::d> const& j, T thetaBar, BlockStatistics& stat );
/// Compute equilibrium distribution function
virtual T computeEquilibrium(plint iPop, T rhoBar, Array<T,Descriptor<T>::d> const& j,
T jSqr, T thetaBar=T()) const;
/* *************** Configurable parameters *************************** */
/// Set local value of any generic parameter
virtual void setParameter(plint whichParameter, T value);
/// Get local value of any generic parameter
virtual T getParameter(plint whichParameter) const;
/// Set local speed of sound
void setPsi(T psi_);
/// Get local speed of sound
T getPsi() const;
/* *************** Switch between population and moment representation ****** */
/*
/// Number of variables required to decompose a population representation into moments.
virtual plint numDecomposedVariables(plint order) const;
/// Decompose from population representation into moment representation.
virtual void decompose(Cell<T,Descriptor> const& cell, std::vector<T>& rawData, plint order) const;
/// Recompose from moment representation to population representation.
virtual void recompose(Cell<T,Descriptor>& cell, std::vector<T> const& rawData, plint order) const;*/
/// Re-compute particle populations from the leading moments
virtual void regularize(Cell<T,Descriptor>& cell, T rhoBar, Array<T,Descriptor<T>::d> const& j,
T jSqr, Array<T,SymmetricTensor<T,Descriptor>::n> const& PiNeq, T thetaBar=T() ) const;
private:
static int id;
T psi;
};
/// BGK Advection-Diffusion dynamics
/** This approach contains a slight error in the diffusion
* term.
*/
template<typename T, template<typename U> class Descriptor>
class AdvectionDiffusionWithSourceBGKdynamics : public AdvectionDiffusionDynamics <T,Descriptor> {
public:
/// Constructor
AdvectionDiffusionWithSourceBGKdynamics(T omega_);
/// Clone the object on its dynamic type.
virtual AdvectionDiffusionWithSourceBGKdynamics<T,Descriptor>* clone() const;
/// Return a unique ID for this class.
virtual int getId() const;
/// Collision step
virtual void collide(Cell<T,Descriptor>& cell,
BlockStatistics& statistics );
/// Compute equilibrium distribution function
virtual T computeEquilibrium(plint iPop, T rhoBar, Array<T,Descriptor<T>::d> const& j,
T jSqr, T thetaBar=T()) const;
/* *************** Switch between population and moment representation ****** */
/// Number of variables required to decompose a population representation into moments.
virtual plint numDecomposedVariables(plint order) const { return 0; }
/// Decompose from population representation into moment representation.
virtual void decompose(Cell<T,Descriptor> const& cell, std::vector<T>& rawData, plint order) const { }
/// Recompose from moment representation to population representation.
virtual void recompose(Cell<T,Descriptor>& cell, std::vector<T> const& rawData, plint order) const { }
/// Change the space and time scales of the variables in moment representation.
virtual void rescale(std::vector<T>& rawData, T xDxInv, T xDt, plint order) const { }
private:
static int id;
};
} // namespace plb
#endif // ADVECTION_DIFFUSION_DYNAMICS_H
|