/usr/include/palabos/boundaryCondition/regularizedBoundaryDynamics2D.hh is in libplb-dev 1.5~r1+repack1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 | /* This file is part of the Palabos library.
*
* Copyright (C) 2011-2015 FlowKit Sarl
* Route d'Oron 2
* 1010 Lausanne, Switzerland
* E-mail contact: contact@flowkit.com
*
* The most recent release of Palabos can be downloaded at
* <http://www.palabos.org/>
*
* The library Palabos is free software: you can redistribute it and/or
* modify it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of the
* License, or (at your option) any later version.
*
* The library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/** \file
* A collection of dynamics classes (e.g. BGK) with which a Cell object
* can be instantiated -- generic implementation.
*/
#ifndef REGULARIZED_BOUNDARY_DYNAMICS_2D_HH
#define REGULARIZED_BOUNDARY_DYNAMICS_2D_HH
#include "boundaryCondition/regularizedBoundaryDynamics2D.h"
namespace plb {
template<typename T, template<typename U> class Descriptor,
int normalX, int normalY>
RegularizedVelocityInnerCornerDynamics2D<T,Descriptor,normalX,normalY>::
RegularizedVelocityInnerCornerDynamics2D(Dynamics<T,Descriptor>* baseDynamics_,
bool automaticPrepareCollision_)
: BoundaryCompositeDynamics<T,Descriptor>(baseDynamics_, automaticPrepareCollision_),
xDynamics(baseDynamics_->clone()),
yDynamics(baseDynamics_->clone())
{ }
template<typename T, template<typename U> class Descriptor,
int normalX, int normalY>
RegularizedVelocityInnerCornerDynamics2D<T,Descriptor,normalX,normalY>*
RegularizedVelocityInnerCornerDynamics2D<T,Descriptor,normalX,normalY>::clone() const
{
return new RegularizedVelocityInnerCornerDynamics2D<T,Descriptor,normalX,normalY>(*this);
}
template<typename T, template<typename U> class Descriptor,
int normalX, int normalY>
void RegularizedVelocityInnerCornerDynamics2D<T,Descriptor,normalX,normalY>::
replaceBaseDynamics(Dynamics<T,Descriptor>* newBaseDynamics)
{
BoundaryCompositeDynamics<T,Descriptor>::replaceBaseDynamics(newBaseDynamics);
xDynamics.replaceBaseDynamics(newBaseDynamics->clone());
yDynamics.replaceBaseDynamics(newBaseDynamics->clone());
}
template<typename T, template<typename U> class Descriptor,
int normalX, int normalY>
void RegularizedVelocityInnerCornerDynamics2D<T,Descriptor,normalX,normalY>::
computeVelocity(Cell<T,Descriptor> const& cell, Array<T,Descriptor<T>::d>& u_ ) const
{
xDynamics.computeVelocity(cell, u_);
}
template<typename T, template<typename U> class Descriptor,
int normalX, int normalY>
void RegularizedVelocityInnerCornerDynamics2D<T,Descriptor,normalX,normalY>::
defineVelocity(Cell<T,Descriptor>& cell, Array<T,Descriptor<T>::d> const& u_ )
{
xDynamics.defineVelocity(cell, u_);
yDynamics.defineVelocity(cell, u_);
}
template<typename T, template<typename U> class Descriptor,
int normalX, int normalY>
T RegularizedVelocityInnerCornerDynamics2D<T,Descriptor,normalX,normalY>::
computeDensity(Cell<T,Descriptor> const& cell) const
{
return (xDynamics.computeDensity(cell) + yDynamics.computeDensity(cell) ) / (T)2;
}
template<typename T, template<typename U> class Descriptor,
int normalX, int normalY>
T RegularizedVelocityInnerCornerDynamics2D<T,Descriptor,normalX,normalY>::
computeRhoBar(Cell<T,Descriptor> const& cell) const
{
return (xDynamics.computeRhoBar(cell) + yDynamics.computeRhoBar(cell) ) / (T)2;
}
template<typename T, template<typename U> class Descriptor,
int normalX, int normalY>
void RegularizedVelocityInnerCornerDynamics2D<T,Descriptor,normalX,normalY>::
computeRhoBarJ(Cell<T,Descriptor> const& cell, T& rhoBar_, Array<T,Descriptor<T>::d>& j_ ) const
{
rhoBar_ = this->computeRhoBar(cell);
T rho = Descriptor<T>::fullRho(rhoBar_);
this -> computeVelocity(cell, j_);
if (!this->velIsJ()) {
for (int iD=0; iD<Descriptor<T>::d; ++iD) {
j_[iD] *= rho;
}
}
}
template<typename T, template<typename U> class Descriptor,
int normalX, int normalY>
void RegularizedVelocityInnerCornerDynamics2D<T,Descriptor,normalX,normalY>::computeRhoBarJPiNeq (
Cell<T,Descriptor> const& cell, T& rhoBar, Array<T,Descriptor<T>::d>& j,
Array<T,SymmetricTensor<T,Descriptor>::n>& PiNeq ) const
{
T tmpRhoBar;
Array<T,Descriptor<T>::d> tmpJ;
Array<T,SymmetricTensor<T,Descriptor>::n> tmpPiNeq;
xDynamics.computeRhoBarJPiNeq(cell, rhoBar, j, PiNeq);
yDynamics.computeRhoBarJPiNeq(cell, tmpRhoBar, tmpJ, tmpPiNeq);
rhoBar = (rhoBar+tmpRhoBar) / (T)2;
for (int iD=0; iD<Descriptor<T>::d; ++iD) {
j[iD] = (j[iD] + tmpJ[iD]) / (T)2;
}
for (int iPi=0; iPi<Descriptor<T>::d; ++iPi) {
PiNeq[iPi] = (PiNeq[iPi] + tmpPiNeq[iPi]) / (T)2;
}
}
template<typename T, template<typename U> class Descriptor,
int normalX, int normalY>
void RegularizedVelocityInnerCornerDynamics2D<T,Descriptor,normalX,normalY>::
completePopulations(Cell<T,Descriptor>& cell) const
{
// 1. Assign "bounce-back of off-equilibrium" to the unknown population
Array<int,Descriptor<T>::d> v ( -normalX, -normalY );
plint unknownF = indexTemplates::findVelocity<Descriptor<T> >(v);
T rhoBar;
Array<T,Descriptor<T>::d> j;
this -> computeRhoBarJ(cell, rhoBar, j);
T jSqr = VectorTemplate<T,Descriptor>::normSqr(j);
// Do nothing if there is no unknown population
if (unknownF != Descriptor<T>::q) {
plint oppositeF = indexTemplates::opposite<Descriptor<T> >(unknownF);
cell[unknownF] = cell[oppositeF]
- this->computeEquilibrium(oppositeF, rhoBar, j, jSqr)
+ this->computeEquilibrium(unknownF, rhoBar, j, jSqr);
}
// 2. Regularize all populations
Array<T,SymmetricTensor<T,Descriptor>::n> PiNeq;
this -> getBaseDynamics().computePiNeq(cell, PiNeq);;
this -> getBaseDynamics().regularize(cell, rhoBar, j, jSqr, PiNeq);
}
} // namespace plb
#endif // REGULARIZED_BOUNDARY_DYNAMICS_2D_HH
|