This file is indexed.

/usr/include/palabos/boundaryCondition/neumannCondition3D.hh is in libplb-dev 1.5~r1+repack1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
/* This file is part of the Palabos library.
 *
 * Copyright (C) 2011-2015 FlowKit Sarl
 * Route d'Oron 2
 * 1010 Lausanne, Switzerland
 * E-mail contact: contact@flowkit.com
 *
 * The most recent release of Palabos can be downloaded at 
 * <http://www.palabos.org/>
 *
 * The library Palabos is free software: you can redistribute it and/or
 * modify it under the terms of the GNU Affero General Public License as
 * published by the Free Software Foundation, either version 3 of the
 * License, or (at your option) any later version.
 *
 * The library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Affero General Public License for more details.
 *
 * You should have received a copy of the GNU Affero General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
*/

/** \file
 * Neumann and outflow boundary conditions -- generic implementation.
 */
#ifndef NEUMANN_CONDITION_3D_HH
#define NEUMANN_CONDITION_3D_HH

#include "boundaryCondition/neumannCondition3D.h"
#include "boundaryCondition/bounceBackModels.h"
#include "latticeBoltzmann/indexTemplates.h"
#include "core/dynamicsIdentifiers.h"

namespace plb {

template<typename T, template<typename U> class Descriptor, int direction, int orientation>
void CopyUnknownPopulationsFunctional3D<T,Descriptor,direction,orientation>::process (
        Box3D domain, BlockLattice3D<T,Descriptor>& lattice )
{
    std::vector<plint> const& unknownIndices = indexTemplates::subIndex<Descriptor<T>, direction, -orientation>();
    enum {
        normalX = direction==0 ? orientation : 0,
        normalY = direction==1 ? orientation : 0,
        normalZ = direction==2 ? orientation : 0
    };
    for (plint iX=domain.x0; iX<=domain.x1; ++iX) {
        for (plint iY=domain.y0; iY<=domain.y1; ++iY) {
            for (plint iZ=domain.z0; iZ<=domain.z1; ++iZ) {
                for (pluint fIndex=0; fIndex<unknownIndices.size(); ++fIndex) {
                    plint iPop = unknownIndices[fIndex];
                    lattice.get(iX,iY,iZ)[iPop] = lattice.get(iX-normalX, iY-normalY, iZ-normalZ)[iPop];
                }
            }
        }
    }
}

template<typename T, template<typename U> class Descriptor, int direction, int orientation>
CopyUnknownPopulationsFunctional3D<T,Descriptor,direction,orientation>*
    CopyUnknownPopulationsFunctional3D<T,Descriptor,direction,orientation>::clone() const
{
    return new CopyUnknownPopulationsFunctional3D<T,Descriptor,direction,orientation>(*this);
}

template<typename T, template<typename U> class Descriptor, int direction, int orientation>
void CopyUnknownPopulationsFunctional3D<T,Descriptor,direction,orientation>::
         getTypeOfModification(std::vector<modif::ModifT>& modified) const
{
    modified[0] = modif::staticVariables;
}

template<typename T, template<typename U> class Descriptor, int direction, int orientation>
BlockDomain::DomainT CopyUnknownPopulationsFunctional3D<T,Descriptor,direction,orientation>::appliesTo() const {
    return BlockDomain::bulk;
}


template<typename T, template<typename U> class Descriptor, int normalX, int normalY, int normalZ> 
void CopyAllPopulationsFunctional3D<T,Descriptor,normalX,normalY,normalZ>::process (
        Box3D domain, BlockLattice3D<T,Descriptor>& lattice )
{
    for (plint iX=domain.x0; iX<=domain.x1; ++iX) {
        for (plint iY=domain.y0; iY<=domain.y1; ++iY) {
            for (plint iZ=domain.z0; iZ<=domain.z1; ++iZ) {
                for (plint iPop=0; iPop<Descriptor<T>::q; ++iPop) {
                    lattice.get(iX,iY,iZ)[iPop] = lattice.get(iX-normalX, iY-normalY, iZ-normalZ)[iPop];
                }
            }
        }
    }
}

template<typename T, template<typename U> class Descriptor, int normalX, int normalY, int normalZ> 
CopyAllPopulationsFunctional3D<T,Descriptor,normalX,normalY,normalZ>*
    CopyAllPopulationsFunctional3D<T,Descriptor,normalX,normalY,normalZ>::clone() const
{
    return new CopyAllPopulationsFunctional3D<T,Descriptor,normalX,normalY,normalZ>(*this);
}

template<typename T, template<typename U> class Descriptor, int normalX, int normalY, int normalZ> 
void CopyAllPopulationsFunctional3D<T,Descriptor, normalX,normalY,normalZ>::
         getTypeOfModification(std::vector<modif::ModifT>& modified) const
{
    modified[0] = modif::staticVariables;
}

template<typename T, template<typename U> class Descriptor, int normalX, int normalY, int normalZ> 
BlockDomain::DomainT CopyAllPopulationsFunctional3D<T,Descriptor,normalX,normalY,normalZ>::appliesTo() const {
    return BlockDomain::bulk;
}


template<typename T, template<typename U> class Descriptor, int normalX, int normalY, int normalZ> 
void CopyVelocityFunctional3D<T,Descriptor,normalX,normalY,normalZ>::process (
        Box3D domain, BlockLattice3D<T,Descriptor>& lattice )
{
    for (plint iX=domain.x0; iX<=domain.x1; ++iX) {
        for (plint iY=domain.y0; iY<=domain.y1; ++iY) {
            for (plint iZ=domain.z0; iZ<=domain.z1; ++iZ) {
                Array<T,Descriptor<T>::d> u;
                lattice.get(iX-normalX, iY-normalY, iZ-normalZ).computeVelocity(u);
                lattice.get(iX, iY, iZ).defineVelocity(u);
            }
        }
    }
}

template<typename T, template<typename U> class Descriptor, int normalX, int normalY, int normalZ> 
CopyVelocityFunctional3D<T,Descriptor,normalX,normalY,normalZ>*
    CopyVelocityFunctional3D<T,Descriptor,normalX,normalY,normalZ>::clone() const
{
    return new CopyVelocityFunctional3D<T,Descriptor,normalX,normalY,normalZ>(*this);
}

template<typename T, template<typename U> class Descriptor, int normalX, int normalY, int normalZ> 
void CopyVelocityFunctional3D<T,Descriptor, normalX,normalY,normalZ>::
         getTypeOfModification(std::vector<modif::ModifT>& modified) const
{
    modified[0] = modif::dynamicVariables;
}

template<typename T, template<typename U> class Descriptor, int normalX, int normalY, int normalZ> 
BlockDomain::DomainT CopyVelocityFunctional3D<T,Descriptor,normalX,normalY,normalZ>::appliesTo() const {
    return BlockDomain::bulk;
}


template<typename T, template<typename U> class Descriptor, int normalX, int normalY, int normalZ> 
void CopyTangentialVelocityFunctional3D<T,Descriptor,normalX,normalY,normalZ>::process (
        Box3D domain, BlockLattice3D<T,Descriptor>& lattice )
{
    for (plint iX=domain.x0; iX<=domain.x1; ++iX) {
        for (plint iY=domain.y0; iY<=domain.y1; ++iY) {
            for (plint iZ=domain.z0; iZ<=domain.z1; ++iZ) {
                Array<T,Descriptor<T>::d> u;
                lattice.get(iX-normalX, iY-normalY, iZ-normalZ).computeVelocity(u);
                if (normalX!=0) {
                    u[0] = T();
                }
                if (normalY!=0) {
                    u[1] = T();
                }
                if (normalZ!=0) {
                    u[2] = T();
                }
                lattice.get(iX, iY, iZ).defineVelocity(u);
            }
        }
    }
}

template<typename T, template<typename U> class Descriptor, int normalX, int normalY, int normalZ> 
CopyTangentialVelocityFunctional3D<T,Descriptor,normalX,normalY,normalZ>*
    CopyTangentialVelocityFunctional3D<T,Descriptor,normalX,normalY,normalZ>::clone() const
{
    return new CopyTangentialVelocityFunctional3D<T,Descriptor,normalX,normalY,normalZ>(*this);
}

template<typename T, template<typename U> class Descriptor, int normalX, int normalY, int normalZ> 
void CopyTangentialVelocityFunctional3D<T,Descriptor, normalX,normalY,normalZ>::
         getTypeOfModification(std::vector<modif::ModifT>& modified) const
{
    modified[0] = modif::dynamicVariables;
}

template<typename T, template<typename U> class Descriptor, int normalX, int normalY, int normalZ> 
BlockDomain::DomainT CopyTangentialVelocityFunctional3D<T,Descriptor,normalX,normalY,normalZ>::appliesTo() const {
    return BlockDomain::bulk;
}



template<typename T, template<typename U> class Descriptor, int normalX, int normalY, int normalZ> 
void CopyNormalVelocityFunctional3D<T,Descriptor,normalX,normalY,normalZ>::process (
        Box3D domain, BlockLattice3D<T,Descriptor>& lattice )
{
    for (plint iX=domain.x0; iX<=domain.x1; ++iX) {
        for (plint iY=domain.y0; iY<=domain.y1; ++iY) {
            for (plint iZ=domain.z0; iZ<=domain.z1; ++iZ) {
                Array<T,Descriptor<T>::d> u;
                lattice.get(iX-normalX, iY-normalY, iZ-normalZ).computeVelocity(u);
                if (normalX==0) {
                    u[0] = T();
                }
                if (normalY==0) {
                    u[1] = T();
                }
                if (normalZ==0) {
                    u[2] = T();
                }
                lattice.get(iX, iY, iZ).defineVelocity(u);
            }
        }
    }
}

template<typename T, template<typename U> class Descriptor, int normalX, int normalY, int normalZ> 
CopyNormalVelocityFunctional3D<T,Descriptor,normalX,normalY,normalZ>*
    CopyNormalVelocityFunctional3D<T,Descriptor,normalX,normalY,normalZ>::clone() const
{
    return new CopyNormalVelocityFunctional3D<T,Descriptor,normalX,normalY,normalZ>(*this);
}

template<typename T, template<typename U> class Descriptor, int normalX, int normalY, int normalZ> 
void CopyNormalVelocityFunctional3D<T,Descriptor, normalX,normalY,normalZ>::
         getTypeOfModification(std::vector<modif::ModifT>& modified) const
{
    modified[0] = modif::dynamicVariables;
}

template<typename T, template<typename U> class Descriptor, int normalX, int normalY, int normalZ> 
BlockDomain::DomainT CopyNormalVelocityFunctional3D<T,Descriptor,normalX,normalY,normalZ>::appliesTo() const {
    return BlockDomain::bulk;
}



template<typename T, template<typename U> class Descriptor, int normalX, int normalY, int normalZ> 
void CopyDensityFunctional3D<T,Descriptor,normalX,normalY,normalZ>::process (
        Box3D domain, BlockLattice3D<T,Descriptor>& lattice )
{
    for (plint iX=domain.x0; iX<=domain.x1; ++iX) {
        for (plint iY=domain.y0; iY<=domain.y1; ++iY) {
            for (plint iZ=domain.z0; iZ<=domain.z1; ++iZ) {
                lattice.get(iX, iY, iZ).defineDensity (
                        lattice.get(iX-normalX, iY-normalY, iZ-normalZ).computeDensity() );
            }
        }
    }
}

template<typename T, template<typename U> class Descriptor, int normalX, int normalY, int normalZ> 
CopyDensityFunctional3D<T,Descriptor,normalX,normalY,normalZ>*
    CopyDensityFunctional3D<T,Descriptor,normalX,normalY,normalZ>::clone() const
{
    return new CopyDensityFunctional3D<T,Descriptor,normalX,normalY,normalZ>(*this);
}

template<typename T, template<typename U> class Descriptor, int normalX, int normalY, int normalZ> 
void CopyDensityFunctional3D<T,Descriptor, normalX,normalY,normalZ>::
         getTypeOfModification(std::vector<modif::ModifT>& modified) const
{
    modified[0] = modif::dynamicVariables;
}

template<typename T, template<typename U> class Descriptor, int normalX, int normalY, int normalZ> 
BlockDomain::DomainT CopyDensityFunctional3D<T,Descriptor,normalX,normalY,normalZ>::appliesTo() const {
    return BlockDomain::bulk;
}

template<typename T, template<typename U> class Descriptor, int direction, int orientation>
void FluidPressureOutlet3D<T,Descriptor,direction,orientation>::process (
        Box3D domain, BlockLattice3D<T,Descriptor>& lattice )
{
    std::vector<plint> const& unknownIndices = indexTemplates::subIndex<Descriptor<T>, direction, -orientation>();
    enum {
        normalX = direction==0 ? orientation : 0,
        normalY = direction==1 ? orientation : 0,
        normalZ = direction==2 ? orientation : 0
    };

    for (plint iX=domain.x0; iX<=domain.x1; ++iX) {
        for (plint iY=domain.y0; iY<=domain.y1; ++iY) {
            for (plint iZ=domain.z0; iZ<=domain.z1; ++iZ) {
                Cell<T,Descriptor>& cell = lattice.get(iX,iY,iZ);
                Cell<T,Descriptor>& neighbor = lattice.get(iX-normalX, iY-normalY, iZ-normalZ);
                for (pluint fIndex=0; fIndex<unknownIndices.size(); ++fIndex) {
                    plint iPop = unknownIndices[fIndex];
                    cell[iPop] = neighbor[iPop];
                }
                T rhoBar;
                Array<T,3> j;
                cell.getDynamics().computeRhoBarJ(cell, rhoBar, j);
                Array<T,Descriptor<T>::q> oldFeq, newFeq;
                T jSqr = normSqr(j);
                cell.getDynamics().computeEquilibria(oldFeq, rhoBar, j, jSqr);
                cell.getDynamics().computeEquilibria(newFeq, T(), j, jSqr);
                for (plint iPop=0; iPop<Descriptor<T>::q; ++iPop) {
                    cell[iPop] += newFeq[iPop]-oldFeq[iPop];
                }
            }
        }
    }
}

template<typename T, template<typename U> class Descriptor, int direction, int orientation>
void CopyUnknown3D<T,Descriptor,direction,orientation>::process (
        Box3D domain, BlockLattice3D<T,Descriptor>& lattice )
{
    std::vector<plint> const& unknownIndices = indexTemplates::subIndex<Descriptor<T>, direction, -orientation>();
    enum {
        normalX = direction==0 ? orientation : 0,
        normalY = direction==1 ? orientation : 0,
        normalZ = direction==2 ? orientation : 0
    };

    for (plint iX=domain.x0; iX<=domain.x1; ++iX) {
        for (plint iY=domain.y0; iY<=domain.y1; ++iY) {
            for (plint iZ=domain.z0; iZ<=domain.z1; ++iZ) {

                Cell<T,Descriptor>& cell = lattice.get(iX,iY,iZ);
                Cell<T,Descriptor>& neighbor = lattice.get(iX-normalX, iY-normalY, iZ-normalZ);
                for (pluint fIndex=0; fIndex<unknownIndices.size(); ++fIndex) {
                    plint iPop = unknownIndices[fIndex];
                    cell[iPop] = neighbor[iPop];
                }
            }
        }
    }
}


template<typename T, template<typename U> class Descriptor>
VirtualOutlet<T,Descriptor>::VirtualOutlet(T outsideDensity_, Box3D globalDomain_, int type_)
        : outsideDensity(outsideDensity_),
          globalDomain(globalDomain_),
          type(type_)
{
    PLB_ASSERT(type == 0 || type == 1);
}

template<typename T, template<typename U> class Descriptor>
void VirtualOutlet<T,Descriptor>::processGenericBlocks(Box3D domain, std::vector<AtomicBlock3D*> blocks)
{
    PLB_ASSERT(blocks.size() == 3);
    BlockLattice3D<T,Descriptor> *lattice = dynamic_cast<BlockLattice3D<T,Descriptor>*>(blocks[0]);
    PLB_ASSERT(lattice);
    ScalarField3D<T> *rhoBar = dynamic_cast<ScalarField3D<T>*>(blocks[1]);
    PLB_ASSERT(rhoBar);
    TensorField3D<T,3> *j = dynamic_cast<TensorField3D<T,3>*>(blocks[2]);
    PLB_ASSERT(j);

    Dot3D absOfs = lattice->getLocation();

    Dot3D ofsRB = computeRelativeDisplacement(*lattice, *rhoBar);
    Dot3D ofsJ = computeRelativeDisplacement(*lattice, *j);

    static const int bounceBackId = BounceBack<T,Descriptor>().getId();
    static const int noDynamicsId = NoDynamics<T,Descriptor>().getId();
    static const Array<plint,3> tmp((plint) 0, (plint) 0, (plint) 0);
    static const int mEBounceBackId = MomentumExchangeBounceBack<T,Descriptor>(tmp).getId();

    if (type == 0) {
        for (plint iX=domain.x0; iX<=domain.x1; ++iX) {
            for (plint iY=domain.y0; iY<=domain.y1; ++iY) {
                for (plint iZ=domain.z0; iZ<=domain.z1; ++iZ) {
                    Cell<T,Descriptor>& cell = lattice->get(iX, iY, iZ);
                    const int dynamicsId = cell.getDynamics().getId();
                    if (dynamicsId == bounceBackId || dynamicsId == noDynamicsId || dynamicsId == mEBounceBackId) {
                        continue;
                    }
                    for (plint iPop = 1; iPop < Descriptor<T>::q; ++iPop) {
                        plint prevX = iX - Descriptor<T>::c[iPop][0];
                        plint prevY = iY - Descriptor<T>::c[iPop][1];
                        plint prevZ = iZ - Descriptor<T>::c[iPop][2];

                        const int prevDynamicsId = lattice->get(prevX, prevY, prevZ).getDynamics().getId();
                        
                        if (!contained(prevX + absOfs.x, prevY + absOfs.y, prevZ + absOfs.z, globalDomain) ||
                            prevDynamicsId == noDynamicsId) {
                            plint opp = indexTemplates::opposite<Descriptor<T> >(iPop);
                            T savedPop = lattice->get(prevX, prevY, prevZ)[opp];

                            // Velocity is simply taken from the previous time step.
                            Array<T,3> J = j->get(iX + ofsJ.x, iY + ofsJ.y, iZ +ofsJ.z);
                            T Jsqr = dot<T,3>(J, J);
                            // Density is prescribed as a boundary condition.
                            T outsideRhoBar = Descriptor<T>::rhoBar(outsideDensity);
                            T feq_i = cell.computeEquilibrium(iPop, outsideRhoBar, J, Jsqr);
                            T feq_opp_i = cell.computeEquilibrium(opp, outsideRhoBar, J, Jsqr);
                            cell[iPop] = feq_i + feq_opp_i - savedPop;
                        }
                    }
                }
            }
        }
    } else {
        for (plint iX=domain.x0; iX<=domain.x1; ++iX) {
            for (plint iY=domain.y0; iY<=domain.y1; ++iY) {
                for (plint iZ=domain.z0; iZ<=domain.z1; ++iZ) {
                    Cell<T,Descriptor>& cell = lattice->get(iX, iY, iZ);
                    int dynamicsId = cell.getDynamics().getId();
                    if (dynamicsId == bounceBackId || dynamicsId == noDynamicsId || dynamicsId == mEBounceBackId) {
                        continue;
                    }
                    for (plint iPop = 1; iPop < Descriptor<T>::q; ++iPop) {
                        plint prevX = iX - Descriptor<T>::c[iPop][0];
                        plint prevY = iY - Descriptor<T>::c[iPop][1];
                        plint prevZ = iZ - Descriptor<T>::c[iPop][2];

                        int prevDynamicsId = lattice->get(prevX, prevY, prevZ).getDynamics().getId();
                        
                        if (!contained(prevX + absOfs.x, prevY + absOfs.y, prevZ + absOfs.z, globalDomain) ||
                            prevDynamicsId == noDynamicsId) {
                            plint opp = indexTemplates::opposite<Descriptor<T> >(iPop);
                            T savedPop = lattice->get(prevX, prevY, prevZ)[opp];

                            // Velocity is simply taken from the previous time step.
                            Array<T,3> J = j->get(iX + ofsJ.x, iY + ofsJ.y, iZ +ofsJ.z);
                            T Jsqr = dot<T,3>(J, J);

                            // For the density there are several choices:
                            // First choice: density from the previous time step.
                            //T RhoBar = rhoBar->get(iX + ofsRB.x, iY + ofsRB.y, iZ +ofsRB.z);

                            // Second choice: Laplacian smoothed value from the previous time step.
                            T RhoBar = 0.0;
                            int n = 0;
                            for (plint dx = -1; dx <= 1; dx++) {
                                plint i = iX + dx;
                                for (plint dy = -1; dy <= 1; dy++) {
                                    plint j = iY + dy;
                                    for (plint dz = -1; dz <= 1; dz++) {
                                        plint k = iZ + dz;
                                        if (!(dx == 0 && dy == 0 && dz == 0)) {
                                            int nextDynamicsId = lattice->get(i, j, k).getDynamics().getId();
                                            if (contained(i + absOfs.x, j + absOfs.y, k + absOfs.z, globalDomain) &&
                                                nextDynamicsId != bounceBackId && nextDynamicsId != noDynamicsId  &&
                                                nextDynamicsId != mEBounceBackId) {
                                                RhoBar += rhoBar->get(i + ofsRB.x, j + ofsRB.y, k +ofsRB.z);
                                                n++;
                                            }
                                        }
                                    }
                                }
                            }
                            if (n != 0) {
                                RhoBar /= n;
                            } else {
                                RhoBar = Descriptor<T>::rhoBar(outsideDensity);
                            }

                            // Third choice: Mean value of the Laplacian smoothed value and the local
                            //               value from the previous time step. This is believed
                            //               to kill checkerboard modes.
                            RhoBar = 0.5 * (RhoBar + rhoBar->get(iX + ofsRB.x, iY + ofsRB.y, iZ +ofsRB.z));

                            T feq_i = cell.computeEquilibrium(iPop, RhoBar, J, Jsqr);
                            T feq_opp_i = cell.computeEquilibrium(opp, RhoBar, J, Jsqr);
                            cell[iPop] = feq_i + feq_opp_i - savedPop;
                        }
                    }
                }
            }
        }
    }
}


template<typename T, template<typename U> class Descriptor,
         int direction, int orientation>
int VirtualOutletDynamics<T,Descriptor,direction,orientation>::id =
    meta::registerGeneralDynamics<T,Descriptor, VirtualOutletDynamics<T,Descriptor,direction,orientation> >
            ( std::string("Boundary_VirtualOutlet_")+util::val2str(direction) +
              std::string("_")+util::val2str(orientation) );

template<typename T, template<typename U> class Descriptor, int direction, int orientation>
VirtualOutletDynamics<T,Descriptor,direction,orientation>::VirtualOutletDynamics (
        Dynamics<T,Descriptor>* baseDynamics, bool automaticPrepareCollision)
    : BoundaryCompositeDynamics<T,Descriptor>(baseDynamics, automaticPrepareCollision)
{ }

template<typename T, template<typename U> class Descriptor,
         int direction, int orientation>
VirtualOutletDynamics<T,Descriptor,direction,orientation>::
    VirtualOutletDynamics(HierarchicUnserializer& unserializer)
        : BoundaryCompositeDynamics<T,Descriptor>(0, false)
{
    unserialize(unserializer);
}

template<typename T, template<typename U> class Descriptor, int direction, int orientation>
VirtualOutletDynamics<T,Descriptor,direction,orientation>*
    VirtualOutletDynamics<T,Descriptor, direction, orientation>::clone() const
{
    return new VirtualOutletDynamics<T,Descriptor,direction,orientation>(*this);
}
 
template<typename T, template<typename U> class Descriptor,
         int direction, int orientation>
void VirtualOutletDynamics<T,Descriptor,direction,orientation>::serialize(HierarchicSerializer& serializer) const
{
    int numPop = (int)savedFneq.size();
    serializer.addValue(numPop);
    serializer.addValues(savedFneq);
    for (int i=0; i<Descriptor<T>::d; ++i) {
        serializer.addValue(savedJ[i]);
    }
    serializer.addValue(savedRhoBar);
    BoundaryCompositeDynamics<T,Descriptor>::serialize(serializer);
}

template<typename T, template<typename U> class Descriptor,
         int direction, int orientation>
void VirtualOutletDynamics<T,Descriptor,direction,orientation>::unserialize(HierarchicUnserializer& unserializer)
{
    int numPop = unserializer.readValue<int>();
    savedFneq.resize(numPop);
    unserializer.readValues(savedFneq);
    for (int i=0; i<Descriptor<T>::d; ++i) {
        savedJ[i] = unserializer.readValue<T>();
    }
    unserializer.readValue(savedRhoBar);
    BoundaryCompositeDynamics<T,Descriptor>::unserialize(unserializer);
}

 
template<typename T, template<typename U> class Descriptor,
         int direction, int orientation>
int VirtualOutletDynamics<T,Descriptor,direction,orientation>::getId() const {
    return id;
}

template<typename T, template<typename U> class Descriptor, int direction, int orientation>
void VirtualOutletDynamics<T,Descriptor,direction,orientation>::saveData(Cell<T,Descriptor>& cell) const
{
    std::vector<plint> unknownInd = indexTemplates::subIndexOutgoing<Descriptor<T>, direction, orientation>();
    cell.getDynamics().computeRhoBarJ(cell, savedRhoBar, savedJ);
    T savedJsqr = normSqr(savedJ);
    for (pluint i=0; i<unknownInd.size(); ++i) {
        plint iPop = unknownInd[i];
        savedFneq[i] = cell[iPop] - cell.computeEquilibrium(iPop, savedRhoBar, savedJ, savedJsqr);
    }
}

template<typename T, template<typename U> class Descriptor, int direction, int orientation>
void VirtualOutletDynamics<T,Descriptor,direction,orientation>::completePopulations(Cell<T,Descriptor>& cell) const
{
    static const int bounceBackId = BounceBack<T,Descriptor>().getId();
    static const int noDynamicsId = NoDynamics<T,Descriptor>().getId();
    static const Array<plint,3> tmp((plint) 0, (plint) 0, (plint) 0);
    static const int mEBounceBackId = MomentumExchangeBounceBack<T,Descriptor>(tmp).getId();

    int dynamicsId = this->getBaseDynamics().getId();
    if (dynamicsId == bounceBackId || dynamicsId == noDynamicsId || dynamicsId == mEBounceBackId) {
        return;
    }
    std::vector<plint> unknownInd = indexTemplates::subIndexOutgoing<Descriptor<T>, direction, orientation>();
    if (savedFneq.size() != unknownInd.size()) {
        PLB_ASSERT( savedFneq.empty() );
        savedFneq.resize( unknownInd.size() );
        saveData(cell);
    }
    T savedJsqr = normSqr(savedJ);
    for (pluint i=0; i<unknownInd.size(); ++i) {
        plint iPop = unknownInd[i];
        cell[iPop] = cell.computeEquilibrium(iPop, savedRhoBar, savedJ, savedJsqr) + savedFneq[i];
    }
    saveData(cell);
}

}  // namespace plb

#endif  // NEUMANN_CONDITION_3D_HH