/usr/include/palabos/boundaryCondition/boundaryTemplates.h is in libplb-dev 1.5~r1+repack1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 | /* This file is part of the Palabos library.
*
* Copyright (C) 2011-2015 FlowKit Sarl
* Route d'Oron 2
* 1010 Lausanne, Switzerland
* E-mail contact: contact@flowkit.com
*
* The most recent release of Palabos can be downloaded at
* <http://www.palabos.org/>
*
* The library Palabos is free software: you can redistribute it and/or
* modify it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of the
* License, or (at your option) any later version.
*
* The library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/** \file
* A collection of dynamics classes (e.g. BGK) with which a Cell object
* can be instantiated -- generic implementation.
*/
#ifndef BOUNDARY_TEMPLATES_H
#define BOUNDARY_TEMPLATES_H
#include "latticeBoltzmann/momentTemplates.h"
#include "boundaryCondition/regularizedBoundaryDynamics.h"
#include "core/cell.h"
#include "latticeBoltzmann/indexTemplates.h"
#include "atomicBlock/blockLattice3D.h"
namespace plb {
/// Computation of flat-wall quantities with static genericity: direction and orientation
/// are template parameters.
template<typename T, template<typename U> class Descriptor, int direction, int orientation>
struct boundaryTemplates {
static void compute_PiNeq (
Dynamics<T,Descriptor> const& dynamics,
Cell<T,Descriptor> const& cell, T rhoBar, Array<T,Descriptor<T>::d> const& j, T jSqr,
Array<T,SymmetricTensor<T,Descriptor>::n>& PiNeq )
{
typedef Descriptor<T> L;
std::vector<plint> const& onWallIndices = indexTemplates::subIndex<L, direction, 0>();
std::vector<plint> const& normalIndices = indexTemplates::subIndex<L, direction, orientation>();
// Compute off-equilibrium for known particle populations.
Array<T,Descriptor<T>::q> fNeq;
for (pluint fIndex=0; fIndex<onWallIndices.size(); ++fIndex) {
plint iPop = onWallIndices[fIndex];
fNeq[iPop] = cell[iPop] - dynamics.computeEquilibrium(iPop, rhoBar, j, jSqr);
}
for (pluint fIndex=0; fIndex<normalIndices.size(); ++fIndex) {
plint iPop = normalIndices[fIndex];
if (iPop == 0) {
fNeq[iPop] = T(); // fNeq[0] will not be used anyway
}
else {
fNeq[iPop] = cell[iPop] - dynamics.computeEquilibrium(iPop, rhoBar, j, jSqr);
}
}
// Compute PiNeq from fNeq, by using "bounce-back of off-equilibrium part" rule.
int iPi = 0;
for (int iAlpha=0; iAlpha<L::d; ++iAlpha) {
for (int iBeta=iAlpha; iBeta<L::d; ++iBeta) {
PiNeq[iPi] = T();
for (pluint fIndex=0; fIndex<onWallIndices.size(); ++fIndex)
{
const plint iPop = onWallIndices[fIndex];
PiNeq[iPi] += L::c[iPop][iAlpha]*L::c[iPop][iBeta]*fNeq[iPop];
}
for (pluint fIndex=0; fIndex<normalIndices.size(); ++fIndex)
{
const plint iPop = normalIndices[fIndex];
PiNeq[iPi] += (T)2 * L::c[iPop][iAlpha]*L::c[iPop][iBeta]* fNeq[iPop];
}
++iPi;
}
}
}
static void compute_jNeq (
Dynamics<T,Descriptor> const& dynamics,
Cell<T,Descriptor> const& cell, T rhoBar, Array<T,Descriptor<T>::d> const& j, T jSqr,
Array<T,Descriptor<T>::d>& jNeq )
{
typedef Descriptor<T> D;
std::vector<plint> const& onWallIndices = indexTemplates::subIndex<D, direction, 0>();
std::vector<plint> const& normalIndices = indexTemplates::subIndex<D, direction, orientation>();
// Compute off-equilibrium for known particle populations.
Array<T,Descriptor<T>::q> fNeq;
for (pluint fIndex=0; fIndex<onWallIndices.size(); ++fIndex) {
plint iPop = onWallIndices[fIndex];
fNeq[iPop] = cell[iPop] - dynamics.computeEquilibrium(iPop, rhoBar, j, jSqr);
}
for (pluint fIndex=0; fIndex<normalIndices.size(); ++fIndex) {
plint iPop = normalIndices[fIndex];
plint iOpp = indexTemplates::opposite<D>(iPop);
if (iPop == 0) {
fNeq[iPop] = T(); // fNeq[0] will not be used anyway
}
else {
fNeq[iPop] = cell[iPop] - dynamics.computeEquilibrium(iPop, rhoBar, j, jSqr);
fNeq[iOpp] = -fNeq[iPop];
}
}
momentTemplatesImpl<T,D>::get_j(fNeq, jNeq );
}
}; // struct boundaryTemplates
/// Computation of flat-wall quantities with dynamic genericity: direction and
/// orientation are dynamic arguments.
namespace flatWall {
template<typename T, template<typename U> class Descriptor>
T computeRhoBar(Cell<T,Descriptor>& cell, int direction, int orientation, T u, T f)
{
T rhoOnWall = T();
T rhoNormal = T();
for (int iPop=0; iPop<Descriptor<T>::q; ++iPop) {
if (Descriptor<T>::c[iPop][direction]==0) {
rhoOnWall += cell[iPop];
}
else if (Descriptor<T>::c[iPop][direction]==orientation) {
rhoNormal += cell[iPop];
}
}
T velNormal = (T)orientation * (u-(T)0.5*f);
T rhoBar = T();
if (cell.getDynamics().velIsJ()) {
rhoBar = (T)2*rhoNormal+rhoOnWall-velNormal;
}
else {
rhoBar =((T)2*rhoNormal+rhoOnWall-Descriptor<T>::SkordosFactor()*velNormal)
/ ((T)1+velNormal);
}
return rhoBar;
}
template<typename T, template<typename U> class Descriptor>
Array<T,3> computeJ (
Cell<T,Descriptor> const& cell, int direction,
int orientation, Array<T,3> j, T rhoBar )
{
T rhoOnWall=T(), rhoNormal=T();
for (int iPop=0; iPop<Descriptor<T>::q; ++iPop) {
if (Descriptor<T>::c[iPop][direction]==0) {
rhoOnWall += cell[iPop];
}
else if (Descriptor<T>::c[iPop][direction]==orientation) {
rhoNormal += cell[iPop];
}
}
j[direction] = (T)orientation*((T)2*rhoNormal+rhoOnWall-rhoBar);
return j;
}
template<typename T, template<typename U> class Descriptor>
void compute_PiNeq (
Dynamics<T,Descriptor> const& dynamics,
Cell<T,Descriptor> const& cell, int direction, int orientation,
T rhoBar, Array<T,Descriptor<T>::d> const& j, T jSqr,
Array<T,SymmetricTensor<T,Descriptor>::n>& PiNeq )
{
typedef Descriptor<T> L;
// Compute off-equilibrium for known particle populations.
Array<T,Descriptor<T>::q> fNeq;
for (int iPop=0; iPop<L::q; ++iPop) {
if (iPop==0) {
fNeq[iPop] = T(); // fNeq[0] will not be used anyway
}
else {
int cNormal = L::c[iPop][direction];
if (cNormal==0 || cNormal==orientation) {
fNeq[iPop] = cell[iPop] - dynamics.computeEquilibrium(iPop, rhoBar, j, jSqr);
}
}
}
// Compute PiNeq from fNeq, by using "bounce-back of off-equilibrium part" rule.
int iPi = 0;
for (int iAlpha=0; iAlpha<L::d; ++iAlpha) {
for (int iBeta=iAlpha; iBeta<L::d; ++iBeta) {
PiNeq[iPi] = T();
for (int iPop=0; iPop<L::q; ++iPop) {
int cNormal = L::c[iPop][direction];
if (cNormal==0) {
PiNeq[iPi] += L::c[iPop][iAlpha]*L::c[iPop][iBeta] *fNeq[iPop];
}
else if (cNormal==orientation) {
PiNeq[iPi] += (T)2 * L::c[iPop][iAlpha]*L::c[iPop][iBeta] *fNeq[iPop];
}
}
++iPi;
}
}
}
template<typename T, template<typename U> class Descriptor>
void extrapolatePopulationsFixPressure(Cell<T,Descriptor> const& cellFrom, Cell<T,Descriptor>& cellTo, int direction, int orientation)
{
for (pluint iPop=0; iPop<Descriptor<T>::q; ++iPop) {
if (Descriptor<T>::c[iPop][direction]==-orientation) {
cellTo[iPop] = cellFrom[iPop];
}
}
T rhoBar;
Array<T,3> j;
cellTo.getDynamics().computeRhoBarJ(cellTo, rhoBar, j);
Array<T,Descriptor<T>::q> oldFeq, newFeq;
T jSqr = normSqr(j);
cellTo.getDynamics().computeEquilibria(oldFeq, rhoBar, j, jSqr);
cellTo.getDynamics().computeEquilibria(newFeq, T(), j, jSqr);
for (plint iPop=0; iPop<Descriptor<T>::q; ++iPop) {
cellTo[iPop] += newFeq[iPop]-oldFeq[iPop];
}
}
template<typename T, template<typename U> class Descriptor>
void extrapolatePopulationsFixPressure(BlockLattice3D<T,Descriptor>& lattice, plint iX, plint iY, plint iZ, int direction, int orientation)
{
Array<plint,3> neighb(iX,iY,iZ);
neighb[direction] -= orientation;
Cell<T,Descriptor>& cellTo = lattice.get(iX,iY,iZ);
Cell<T,Descriptor>& cellFrom = lattice.get(neighb[0], neighb[1], neighb[2]);
extrapolatePopulationsFixPressure(cellFrom, cellTo, direction, orientation);
}
} // namespace flatWall
} // namespace plb
#endif // BOUNDARY_TEMPLATES_H
|