This file is indexed.

/usr/include/palabos/boundaryCondition/boundaryTemplates.h is in libplb-dev 1.5~r1+repack1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
/* This file is part of the Palabos library.
 *
 * Copyright (C) 2011-2015 FlowKit Sarl
 * Route d'Oron 2
 * 1010 Lausanne, Switzerland
 * E-mail contact: contact@flowkit.com
 *
 * The most recent release of Palabos can be downloaded at 
 * <http://www.palabos.org/>
 *
 * The library Palabos is free software: you can redistribute it and/or
 * modify it under the terms of the GNU Affero General Public License as
 * published by the Free Software Foundation, either version 3 of the
 * License, or (at your option) any later version.
 *
 * The library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Affero General Public License for more details.
 *
 * You should have received a copy of the GNU Affero General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
*/

/** \file
 * A collection of dynamics classes (e.g. BGK) with which a Cell object
 * can be instantiated -- generic implementation.
 */
#ifndef BOUNDARY_TEMPLATES_H
#define BOUNDARY_TEMPLATES_H

#include "latticeBoltzmann/momentTemplates.h"
#include "boundaryCondition/regularizedBoundaryDynamics.h"
#include "core/cell.h"
#include "latticeBoltzmann/indexTemplates.h"
#include "atomicBlock/blockLattice3D.h"

namespace plb {

/// Computation of flat-wall quantities with static genericity: direction and orientation
/// are template parameters.
template<typename T, template<typename U> class Descriptor, int direction, int orientation>
struct boundaryTemplates {
    static void compute_PiNeq (
         Dynamics<T,Descriptor> const& dynamics,
         Cell<T,Descriptor> const& cell, T rhoBar, Array<T,Descriptor<T>::d> const& j, T jSqr,
         Array<T,SymmetricTensor<T,Descriptor>::n>& PiNeq )
    {
        typedef Descriptor<T> L;

        std::vector<plint> const& onWallIndices = indexTemplates::subIndex<L, direction, 0>();
        std::vector<plint> const& normalIndices = indexTemplates::subIndex<L, direction, orientation>();

        // Compute off-equilibrium for known particle populations.
        Array<T,Descriptor<T>::q> fNeq;
        for (pluint fIndex=0; fIndex<onWallIndices.size(); ++fIndex) {
            plint iPop = onWallIndices[fIndex];
            fNeq[iPop] = cell[iPop] - dynamics.computeEquilibrium(iPop, rhoBar, j, jSqr);
        }
        for (pluint fIndex=0; fIndex<normalIndices.size(); ++fIndex) {
            plint iPop = normalIndices[fIndex];
            if (iPop == 0) {
                fNeq[iPop] = T();  // fNeq[0] will not be used anyway
            }
            else {
                fNeq[iPop] = cell[iPop] - dynamics.computeEquilibrium(iPop, rhoBar, j, jSqr);
            }
        }

        // Compute PiNeq from fNeq, by using "bounce-back of off-equilibrium part" rule.
        int iPi = 0;
        for (int iAlpha=0; iAlpha<L::d; ++iAlpha) {
            for (int iBeta=iAlpha; iBeta<L::d; ++iBeta) {
                PiNeq[iPi] = T();
                for (pluint fIndex=0; fIndex<onWallIndices.size(); ++fIndex)
                {
                    const plint iPop = onWallIndices[fIndex];
                    PiNeq[iPi] += L::c[iPop][iAlpha]*L::c[iPop][iBeta]*fNeq[iPop];
                }
                for (pluint fIndex=0; fIndex<normalIndices.size(); ++fIndex)
                {
                    const plint iPop = normalIndices[fIndex];
                    PiNeq[iPi] += (T)2 * L::c[iPop][iAlpha]*L::c[iPop][iBeta]* fNeq[iPop];
                }
                ++iPi;
            }
        }
    }
    
    static void compute_jNeq (
         Dynamics<T,Descriptor> const& dynamics,
         Cell<T,Descriptor> const& cell, T rhoBar, Array<T,Descriptor<T>::d> const& j, T jSqr,
         Array<T,Descriptor<T>::d>& jNeq )
    {
        typedef Descriptor<T> D;

        std::vector<plint> const& onWallIndices = indexTemplates::subIndex<D, direction, 0>();
        std::vector<plint> const& normalIndices = indexTemplates::subIndex<D, direction, orientation>();

        // Compute off-equilibrium for known particle populations.
        Array<T,Descriptor<T>::q> fNeq;
        for (pluint fIndex=0; fIndex<onWallIndices.size(); ++fIndex) {
            plint iPop = onWallIndices[fIndex];
            fNeq[iPop] = cell[iPop] - dynamics.computeEquilibrium(iPop, rhoBar, j, jSqr);
        }
        for (pluint fIndex=0; fIndex<normalIndices.size(); ++fIndex) {
            plint iPop = normalIndices[fIndex];
            plint iOpp = indexTemplates::opposite<D>(iPop);
            if (iPop == 0) {
                fNeq[iPop] = T();  // fNeq[0] will not be used anyway
            }
            else {
                fNeq[iPop] = cell[iPop] - dynamics.computeEquilibrium(iPop, rhoBar, j, jSqr);
                fNeq[iOpp] = -fNeq[iPop];
            }
        }

        momentTemplatesImpl<T,D>::get_j(fNeq, jNeq );
    }

};  // struct boundaryTemplates

/// Computation of flat-wall quantities with dynamic genericity: direction and
/// orientation are dynamic arguments.
namespace flatWall {

template<typename T, template<typename U> class Descriptor>
T computeRhoBar(Cell<T,Descriptor>& cell, int direction, int orientation, T u, T f)
{
    T rhoOnWall = T();
    T rhoNormal = T();
    for (int iPop=0; iPop<Descriptor<T>::q; ++iPop) {
        if (Descriptor<T>::c[iPop][direction]==0) {
            rhoOnWall += cell[iPop];
        }
        else if (Descriptor<T>::c[iPop][direction]==orientation) {
            rhoNormal += cell[iPop];
        }
    }

    T velNormal = (T)orientation * (u-(T)0.5*f);
    T rhoBar = T();
    if (cell.getDynamics().velIsJ()) {
        rhoBar = (T)2*rhoNormal+rhoOnWall-velNormal;
    }
    else {
        rhoBar =((T)2*rhoNormal+rhoOnWall-Descriptor<T>::SkordosFactor()*velNormal)
                    / ((T)1+velNormal);
    }
    return rhoBar;
}

template<typename T, template<typename U> class Descriptor>
Array<T,3> computeJ (
        Cell<T,Descriptor> const& cell, int direction,
        int orientation, Array<T,3> j, T rhoBar )
{
    T rhoOnWall=T(), rhoNormal=T();
    for (int iPop=0; iPop<Descriptor<T>::q; ++iPop) {
        if (Descriptor<T>::c[iPop][direction]==0) {
            rhoOnWall += cell[iPop];
        }
        else if (Descriptor<T>::c[iPop][direction]==orientation) {
            rhoNormal += cell[iPop];
        }
    }

    j[direction] = (T)orientation*((T)2*rhoNormal+rhoOnWall-rhoBar);
    return j;
}

template<typename T, template<typename U> class Descriptor>
void compute_PiNeq (
     Dynamics<T,Descriptor> const& dynamics,
     Cell<T,Descriptor> const& cell, int direction, int orientation,
     T rhoBar, Array<T,Descriptor<T>::d> const& j, T jSqr,
     Array<T,SymmetricTensor<T,Descriptor>::n>& PiNeq )
{
    typedef Descriptor<T> L;

    // Compute off-equilibrium for known particle populations.
    Array<T,Descriptor<T>::q> fNeq;

    for (int iPop=0; iPop<L::q; ++iPop) {
        if (iPop==0) {
            fNeq[iPop] = T();  // fNeq[0] will not be used anyway
        }
        else {
            int cNormal = L::c[iPop][direction];
            if (cNormal==0 || cNormal==orientation) {
                fNeq[iPop] = cell[iPop] - dynamics.computeEquilibrium(iPop, rhoBar, j, jSqr);
            }
        }
    }

    // Compute PiNeq from fNeq, by using "bounce-back of off-equilibrium part" rule.
    int iPi = 0;
    for (int iAlpha=0; iAlpha<L::d; ++iAlpha) {
        for (int iBeta=iAlpha; iBeta<L::d; ++iBeta) {
            PiNeq[iPi] = T();
            for (int iPop=0; iPop<L::q; ++iPop) {
                int cNormal = L::c[iPop][direction];
                if (cNormal==0) {
                    PiNeq[iPi] += L::c[iPop][iAlpha]*L::c[iPop][iBeta] *fNeq[iPop];
                }
                else if (cNormal==orientation) {
                    PiNeq[iPi] += (T)2 * L::c[iPop][iAlpha]*L::c[iPop][iBeta] *fNeq[iPop];
                }
            }
            ++iPi;
        }
    }
}

template<typename T, template<typename U> class Descriptor>
void extrapolatePopulationsFixPressure(Cell<T,Descriptor> const& cellFrom, Cell<T,Descriptor>& cellTo, int direction, int orientation)
{
    for (pluint iPop=0; iPop<Descriptor<T>::q; ++iPop) {
        if (Descriptor<T>::c[iPop][direction]==-orientation) {
            cellTo[iPop] = cellFrom[iPop];
        }
    }
    T rhoBar;
    Array<T,3> j;
    cellTo.getDynamics().computeRhoBarJ(cellTo, rhoBar, j);
    Array<T,Descriptor<T>::q> oldFeq, newFeq;
    T jSqr = normSqr(j);
    cellTo.getDynamics().computeEquilibria(oldFeq, rhoBar, j, jSqr);
    cellTo.getDynamics().computeEquilibria(newFeq, T(), j, jSqr);
    for (plint iPop=0; iPop<Descriptor<T>::q; ++iPop) {
        cellTo[iPop] += newFeq[iPop]-oldFeq[iPop];
    }
}

template<typename T, template<typename U> class Descriptor>
void extrapolatePopulationsFixPressure(BlockLattice3D<T,Descriptor>& lattice, plint iX, plint iY, plint iZ, int direction, int orientation)
{
    Array<plint,3> neighb(iX,iY,iZ);
    neighb[direction] -= orientation;
    Cell<T,Descriptor>& cellTo = lattice.get(iX,iY,iZ);
    Cell<T,Descriptor>& cellFrom = lattice.get(neighb[0], neighb[1], neighb[2]);
    extrapolatePopulationsFixPressure(cellFrom, cellTo, direction, orientation);
}

}  // namespace flatWall

}  // namespace plb

#endif  // BOUNDARY_TEMPLATES_H