/usr/include/palabos/boundaryCondition/boundaryDynamics.h is in libplb-dev 1.5~r1+repack1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 | /* This file is part of the Palabos library.
*
* Copyright (C) 2011-2015 FlowKit Sarl
* Route d'Oron 2
* 1010 Lausanne, Switzerland
* E-mail contact: contact@flowkit.com
*
* The most recent release of Palabos can be downloaded at
* <http://www.palabos.org/>
*
* The library Palabos is free software: you can redistribute it and/or
* modify it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of the
* License, or (at your option) any later version.
*
* The library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/** \file
* A collection of dynamics classes (e.g. BGK) with which a Cell object
* can be instantiated -- header file.
*/
#ifndef BOUNDARY_DYNAMICS_H
#define BOUNDARY_DYNAMICS_H
#include "core/globalDefs.h"
#include "core/dynamics.h"
#include "core/hierarchicSerializer.h"
namespace plb {
/// Computation of the macroscopic variables is obtained after invoking completion scheme
/** You can instantiate this non-abstract class. This is not interesting, though,
* as it is semantically identical with the base dynamics. Classes which inherit
* from this one are more interesting, as they customize some aspects. Examples:
* computation of the velocity on a velocity boundary, or, completion scheme for
* a boundary node with missing particle populations (and no data processor to
* complete them by non-local means).
*/
template<typename T, template<typename U> class Descriptor>
class BoundaryCompositeDynamics : public PreparePopulationsDynamics<T,Descriptor> {
public:
/* *************** Construction and Destruction ********************** */
BoundaryCompositeDynamics( Dynamics<T,Descriptor>* baseDynamics_,
bool automaticPrepareCollision_=true );
/// Clone the object, based on its dynamic type
virtual BoundaryCompositeDynamics<T,Descriptor>* clone() const;
/// Return a unique ID for this class.
virtual int getId() const;
virtual bool isBoundary() const;
virtual void serialize(HierarchicSerializer& serializer) const;
virtual void unserialize(HierarchicUnserializer& unserializer);
/* *************** Computation of macroscopic variables ************** */
/// Compute the local particle density in lattice units
virtual T computeDensity(Cell<T,Descriptor> const& cell) const;
/// Compute the local pressure in lattice units
virtual T computePressure(Cell<T,Descriptor> const& cell) const;
/// Compute the local fluid velocity in lattice units
virtual void computeVelocity( Cell<T,Descriptor> const& cell,
Array<T,Descriptor<T>::d>& velocity ) const;
/// Compute the temperature in lattice units
virtual T computeTemperature(Cell<T,Descriptor> const& cell) const;
/// Compute the "off-equilibrium part of Pi"
virtual void computePiNeq (
Cell<T,Descriptor> const& cell, Array<T,SymmetricTensor<T,Descriptor>::n>& PiNeq ) const;
/// Compute the deviatoric stress tensor
virtual void computeShearStress (
Cell<T,Descriptor> const& cell, Array<T,SymmetricTensor<T,Descriptor>::n>& stress ) const;
/// Compute the heat flux in lattice units
virtual void computeHeatFlux( Cell<T,Descriptor> const& cell,
Array<T,Descriptor<T>::d>& q ) const;
/// Compute additional user-defined moments
virtual void computeMoment( Cell<T,Descriptor> const& cell,
plint momentId, T* moment ) const;
/* *************** Additional moments, intended for internal use ***** */
/// Compute order-0 moment rho-bar
virtual T computeRhoBar(Cell<T,Descriptor> const& cell) const;
/// Compute order-0 moment rho-bar and order-1 moment j
virtual void computeRhoBarJ(Cell<T,Descriptor> const& cell,
T& rhoBar_, Array<T,Descriptor<T>::d>& j) const;
/// Compute order-0 moment rho-bar, order-1 moment j, and order-2
/// off-equilibrium moment PiNeq.
virtual void computeRhoBarJPiNeq(Cell<T,Descriptor> const& cell,
T& rhoBar, Array<T,Descriptor<T>::d>& j,
Array<T,SymmetricTensor<T,Descriptor>::n>& PiNeq) const;
/// Compute e-bar, which is related to the internal energy
virtual T computeEbar(Cell<T,Descriptor> const& cell) const;
/* *************** Default completion scheme ************************* */
/// Default completion scheme, does nothing
virtual void completePopulations(Cell<T,Descriptor>& cell) const;
/// Decompose from population representation into moment representation.
virtual void decompose(Cell<T,Descriptor> const& cell, std::vector<T>& rawData, plint order) const;
private:
static int id;
};
/// Value of the density is stored inside Dynamics
template<typename T, template<typename U> class Descriptor>
class StoreDensityDynamics : public BoundaryCompositeDynamics<T,Descriptor> {
public:
/* *************** Construction and Destruction ********************** */
StoreDensityDynamics(Dynamics<T,Descriptor>* baseDynamics_,
bool automaticPrepareCollision_=true );
StoreDensityDynamics(HierarchicUnserializer& unserializer);
/// Clone the object, based on its dynamic type
virtual StoreDensityDynamics<T,Descriptor>* clone() const;
/// Return a unique ID for this class.
virtual int getId() const;
virtual void serialize(HierarchicSerializer& serializer) const;
virtual void unserialize(HierarchicUnserializer& unserializer);
/* *************** Computation of macroscopic variables ************** */
/// Compute the local particle density in lattice units
virtual T computeDensity(Cell<T,Descriptor> const& cell) const;
/// Define density. Stores the value inside the Dynamics object.
virtual void defineDensity(Cell<T,Descriptor>& cell, T rho_);
/* *************** Additional moments, intended for internal use ***** */
/// Compute order-0 moment rho-bar
virtual T computeRhoBar(Cell<T,Descriptor> const& cell) const;
/// Compute order-0 moment rho-bar and order-1 moment j
virtual void computeRhoBarJ(Cell<T,Descriptor> const& cell,
T& rhoBar_, Array<T,Descriptor<T>::d>& j) const;
protected:
T rhoBar;
private:
static int id;
};
/// Value of the velocity is stored inside dynamics
template<typename T, template<typename U> class Descriptor>
class StoreVelocityDynamics : public BoundaryCompositeDynamics<T,Descriptor> {
public:
/* *************** Construction and Destruction ********************** */
StoreVelocityDynamics(Dynamics<T,Descriptor>* baseDynamics_,
bool automaticPrepareCollision_=true);
StoreVelocityDynamics(HierarchicUnserializer& unserializer);
/// Clone the object, based on its dynamic type
virtual StoreVelocityDynamics<T,Descriptor>* clone() const;
/// Return a unique ID for this class.
virtual int getId() const;
virtual void serialize(HierarchicSerializer& serializer) const;
virtual void unserialize(HierarchicUnserializer& unserializer);
/* *************** Computation of macroscopic variables ************** */
/// Compute the local fluid velocity in lattice units
virtual void computeVelocity( Cell<T,Descriptor> const& cell,
Array<T,Descriptor<T>::d>& velocity_ ) const;
/// Define velocity. Stores value inside Dynamics object.
virtual void defineVelocity(Cell<T,Descriptor>& cell, Array<T,Descriptor<T>::d> const& velocity_);
/* *************** Additional moments, intended for internal use ***** */
/// Compute order-0 moment rho-bar
virtual T computeRhoBar(Cell<T,Descriptor> const& cell) const;
/// Compute order-0 moment rho-bar and order-1 moment j
virtual void computeRhoBarJ(Cell<T,Descriptor> const& cell,
T& rhoBar_, Array<T,Descriptor<T>::d>& j) const;
protected:
Array<T,Descriptor<T>::d> velocity;
private:
static int id;
};
/// Density and Velocity are stored inside dynamics
template<typename T, template<typename U> class Descriptor>
class StoreDensityAndVelocityDynamics : public BoundaryCompositeDynamics<T,Descriptor> {
public:
/* *************** Construction and Destruction ********************** */
StoreDensityAndVelocityDynamics( Dynamics<T,Descriptor>* baseDynamics_,
bool automaticPrepareCollision_=true );
StoreDensityAndVelocityDynamics(HierarchicUnserializer& unserializer);
/// Clone the object, based on its dynamic type
virtual StoreDensityAndVelocityDynamics<T,Descriptor>* clone() const;
/// Return a unique ID for this class.
virtual int getId() const;
virtual void serialize(HierarchicSerializer& serializer) const;
virtual void unserialize(HierarchicUnserializer& unserializer);
/* *************** Computation of macroscopic variables ************** */
/// Compute the local particle density in lattice units
virtual T computeDensity(Cell<T,Descriptor> const& cell) const;
/// Compute the local fluid velocity in lattice units
virtual void computeVelocity( Cell<T,Descriptor> const& cell,
Array<T,Descriptor<T>::d>& velocity_ ) const;
/// Define density. Stores the value inside the Dynamics object.
virtual void defineDensity(Cell<T,Descriptor>& cell, T rho_);
/// Define velocity. Stores value inside Dynamics object.
virtual void defineVelocity(Cell<T,Descriptor>& cell, Array<T,Descriptor<T>::d> const& velocity_);
/* *************** Additional moments, intended for internal use ***** */
/// Compute order-0 moment rho-bar
virtual T computeRhoBar(Cell<T,Descriptor> const& cell) const;
/// Compute order-0 moment rho-bar and order-1 moment j
virtual void computeRhoBarJ(Cell<T,Descriptor> const& cell,
T& rhoBar_, Array<T,Descriptor<T>::d>& j) const;
protected:
T rhoBar;
Array<T,Descriptor<T>::d> velocity;
private:
static int id;
};
/// Temperature and Velocity are stored inside dynamics
template<typename T, template<typename U> class Descriptor>
class StoreTemperatureAndVelocityDynamics : public BoundaryCompositeDynamics<T,Descriptor> {
public:
/* *************** Construction and Destruction ********************** */
StoreTemperatureAndVelocityDynamics(Dynamics<T,Descriptor>* baseDynamics_,
bool automaticPrepareCollision_ =true);
StoreTemperatureAndVelocityDynamics(HierarchicUnserializer& unserializer);
/// Clone the object, based on its dynamic type
virtual StoreTemperatureAndVelocityDynamics<T,Descriptor>* clone() const;
/// Return a unique ID for this class.
virtual int getId() const;
virtual void serialize(HierarchicSerializer& serializer) const;
virtual void unserialize(HierarchicUnserializer& unserializer);
/* *************** Computation of macroscopic variables ************** */
/// Compute the local fluid velocity in lattice units
virtual void computeVelocity( Cell<T,Descriptor> const& cell,
Array<T,Descriptor<T>::d>& velocity_ ) const;
/// Compute the temperature in lattice units
virtual T computeTemperature(Cell<T,Descriptor> const& cell) const;
/// Define velocity. Stores value inside Dynamics object.
virtual void defineVelocity(Cell<T,Descriptor>& cell, Array<T,Descriptor<T>::d> const& velocity_);
/// Define density. Stores the value inside the Dynamics object.
virtual void defineTemperature(Cell<T,Descriptor>& cell, T theta_);
/* *************** Additional moments, intended for internal use ***** */
/// Compute order-0 moment rho-bar
virtual T computeRhoBar(Cell<T,Descriptor> const& cell) const;
/// Compute order-0 moment rho-bar and order-1 moment j
virtual void computeRhoBarJ(Cell<T,Descriptor> const& cell,
T& rhoBar_, Array<T,Descriptor<T>::d>& j) const;
protected:
T thetaBar;
Array<T,Descriptor<T>::d> velocity;
private:
static int id;
};
/// Velocity Dirichlet boundary dynamics for a straight wall
template<typename T, template<typename U> class Descriptor,
int direction, int orientation>
class VelocityDirichletBoundaryDynamics : public StoreVelocityDynamics<T,Descriptor> {
public:
VelocityDirichletBoundaryDynamics(Dynamics<T,Descriptor>* baseDynamics_,
bool automaticPrepareCollision_=true);
VelocityDirichletBoundaryDynamics(HierarchicUnserializer& unserializer);
/// Clone the object, based on its dynamic type
virtual VelocityDirichletBoundaryDynamics<T,Descriptor,direction,orientation>* clone() const;
/// Return a unique ID for this class.
virtual int getId() const;
virtual void serialize(HierarchicSerializer& serializer) const;
virtual void unserialize(HierarchicUnserializer& unserializer);
/// Compute density from incoming particle populations
virtual T computeDensity(Cell<T,Descriptor> const& cell) const;
/// Compute order-0 moment rho-bar
virtual T computeRhoBar(Cell<T,Descriptor> const& cell) const;
/// Compute order-0 moment rho-bar and order-1 moment j
virtual void computeRhoBarJ(Cell<T,Descriptor> const& cell,
T& rhoBar_, Array<T,Descriptor<T>::d>& j) const;
private:
static int id;
};
/// Density Dirichlet boundary dynamics for a straight wall
template<typename T, template<typename U> class Descriptor,
int direction, int orientation>
class DensityDirichletBoundaryDynamics : public StoreDensityDynamics<T,Descriptor> {
public:
DensityDirichletBoundaryDynamics(Dynamics<T,Descriptor>* baseDynamics_,
bool automaticPrepareCollision_=true);
DensityDirichletBoundaryDynamics(HierarchicUnserializer& unserializer);
/// Clone the object, based on its dynamic type
virtual DensityDirichletBoundaryDynamics<T,Descriptor,direction,orientation>* clone() const;
/// Return a unique ID for this class.
virtual int getId() const;
virtual void serialize(HierarchicSerializer& serializer) const;
virtual void unserialize(HierarchicUnserializer& unserializer);
/// Compute the local fluid velocity in lattice units
virtual void computeVelocity( Cell<T,Descriptor> const& cell,
Array<T,Descriptor<T>::d>& velocity ) const;
/// Compute order-0 moment rho-bar and order-1 moment j
virtual void computeRhoBarJ(Cell<T,Descriptor> const& cell,
T& rhoBar, Array<T,Descriptor<T>::d>& j) const;
public:
void computeJ( Cell<T,Descriptor> const& cell, Array<T,Descriptor<T>::d>& j_ ) const;
private:
static int id;
};
} // namespace plb
#endif // BOUNDARY_DYNAMICS_H
|