This file is indexed.

/usr/include/palabos/boundaryCondition/bounceBackModels.hh is in libplb-dev 1.5~r1+repack1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
/* This file is part of the Palabos library.
 *
 * Copyright (C) 2011-2015 FlowKit Sarl
 * Route d'Oron 2
 * 1010 Lausanne, Switzerland
 * E-mail contact: contact@flowkit.com
 *
 * The most recent release of Palabos can be downloaded at 
 * <http://www.palabos.org/>
 *
 * The library Palabos is free software: you can redistribute it and/or
 * modify it under the terms of the GNU Affero General Public License as
 * published by the Free Software Foundation, either version 3 of the
 * License, or (at your option) any later version.
 *
 * The library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Affero General Public License for more details.
 *
 * You should have received a copy of the GNU Affero General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
*/

/** \file
 * A collection of dynamics classes (e.g. BGK) with which a Cell object
 * can be instantiated -- generic implementation.
 */
#ifndef BOUNCE_BACK_MODELS_HH
#define BOUNCE_BACK_MODELS_HH

#include "boundaryCondition/bounceBackModels.h"
#include "core/cell.h"
#include "latticeBoltzmann/dynamicsTemplates.h"
#include "latticeBoltzmann/momentTemplates.h"
#include "core/latticeStatistics.h"
#include "core/array.h"
#include <algorithm>
#include <limits>

namespace plb {

/* *************** Class MomentumExchangeBounceBack ************************* */

template<typename T, template<typename U> class Descriptor>
MomentumExchangeBounceBack<T,Descriptor>::MomentumExchangeBounceBack (
        Array<plint, Descriptor<T>::d> forceIds_, T rho_)
    : fluidDirections(),
      forceIds(forceIds_),
      rho(rho_)
{ }

template<typename T, template<typename U> class Descriptor>
MomentumExchangeBounceBack<T,Descriptor>::MomentumExchangeBounceBack(HierarchicUnserializer& unserializer)
{
    unserialize(unserializer);
}


template<typename T, template<typename U> class Descriptor>
MomentumExchangeBounceBack<T,Descriptor>* MomentumExchangeBounceBack<T,Descriptor>::clone() const {
    return new MomentumExchangeBounceBack<T,Descriptor>(*this);
}

template<typename T, template<typename U> class Descriptor>
int MomentumExchangeBounceBack<T,Descriptor>::id =
    meta::registerGeneralDynamics<T,Descriptor,MomentumExchangeBounceBack<T,Descriptor> >("MomentumExchangeBounceBack");

template<typename T, template<typename U> class Descriptor>
int MomentumExchangeBounceBack<T,Descriptor>::getId() const {
    return id;
}

template<typename T, template<typename U> class Descriptor>
void MomentumExchangeBounceBack<T,Descriptor>::serialize(HierarchicSerializer& serializer) const
{
    serializer.addValue(rho);
    serializer.addValue((int)(fluidDirections.size()));
    serializer.addValues(fluidDirections);
    for (plint iDim=0; iDim<Descriptor<T>::d; ++iDim) {
        serializer.addValue(forceIds[iDim]);
    }
//     Dynamics<T,Descriptor>::serialize(serializer);
}

template<typename T, template<typename U> class Descriptor>
void MomentumExchangeBounceBack<T,Descriptor>::unserialize(HierarchicUnserializer& unserializer) 
{
    PLB_PRECONDITION( unserializer.getId() == this->getId() );
    unserializer.readValue(rho);
    fluidDirections.resize(unserializer.readValue<int>());
    unserializer.readValues(fluidDirections);
    for (plint iDim=0; iDim<Descriptor<T>::d; ++iDim) {
        unserializer.readValue(forceIds[iDim]);
    }
//     Dynamics<T,Descriptor>::unserialize(unserializer);
}
 
template<typename T, template<typename U> class Descriptor>
void MomentumExchangeBounceBack<T,Descriptor>::collide (
        Cell<T,Descriptor>& cell,
        BlockStatistics& statistics )
{
    enum { numDim=Descriptor<T>::d };
    using namespace indexTemplates;

    // Before collision, the amount of exchanged momentum is computed.
    Array<T,numDim> momentum;
    momentum.resetToZero();
    // Sum over all populations which are incoming from the fluid.
    for (pluint iFluid=0; iFluid < fluidDirections.size(); ++iFluid) {
        plint iPop = fluidDirections[iFluid];
        plint iOpp = opposite<Descriptor<T> >(iPop);
        for (plint iD=0; iD<numDim; ++iD) {
            // The momentum contribution is multiplied by two:
            //   One contribution for the momentum loss into the obstacle,
            //   and one contribution for the momentum gain in the subsequent
            //   after-bounce-back streaming step.
            momentum[iD] += (T)2*Descriptor<T>::c[iPop][iD]*cell[iOpp];
        }
    }
    // Add the momentum exchange for this cell to the total balance due to the
    //   obstacle.
    if (cell.takesStatistics()) {
        for (plint iD=0; iD<numDim; ++iD) {
            // Add a negative sign, to get the force acting on the obstacle,
            //   and not on the fluid.
            statistics.gatherSum(forceIds[iD], -momentum[iD]);
        }
    }

    // Finally, do the bounce-back operation, which replaces the usual collision.
    for (plint iPop=1; iPop <= Descriptor<T>::q/2; ++iPop) {
        std::swap(cell[iPop], cell[iPop+Descriptor<T>::q/2]);
    }
}

template<typename T, template<typename U> class Descriptor>
void MomentumExchangeBounceBack<T,Descriptor>::collideExternal (
        Cell<T,Descriptor>& cell, T rhoBar,
        Array<T,Descriptor<T>::d> const& j, T thetaBar, BlockStatistics& stat )
{
    collide(cell, stat);
}

template<typename T, template<typename U> class Descriptor>
T MomentumExchangeBounceBack<T,Descriptor>::computeEquilibrium(plint iPop, T rhoBar, Array<T,Descriptor<T>::d> const& j,
                                                               T jSqr, T thetaBar) const
{
    return T();
}

template<typename T, template<typename U> class Descriptor>
void MomentumExchangeBounceBack<T,Descriptor>::regularize(
        Cell<T,Descriptor>& cell, T rhoBar, Array<T,Descriptor<T>::d> const& j,
        T jSqr, Array<T,SymmetricTensor<T,Descriptor>::n> const& PiNeq, T thetaBar ) const
{ }

template<typename T, template<typename U> class Descriptor>
T MomentumExchangeBounceBack<T,Descriptor>::computeDensity(Cell<T,Descriptor> const& cell) const {
    return rho;
}

template<typename T, template<typename U> class Descriptor>
T MomentumExchangeBounceBack<T,Descriptor>::computePressure(Cell<T,Descriptor> const& cell) const {
    return T();
}

template<typename T, template<typename U> class Descriptor>
void MomentumExchangeBounceBack<T,Descriptor>::computeVelocity (
        Cell<T,Descriptor> const& cell,
        Array<T,Descriptor<T>::d>& u) const
{
    u.resetToZero();
}

template<typename T, template<typename U> class Descriptor>
T MomentumExchangeBounceBack<T,Descriptor>::computeTemperature(Cell<T,Descriptor> const& cell) const {
    return T();
}

template<typename T, template<typename U> class Descriptor>
void MomentumExchangeBounceBack<T,Descriptor>::computePiNeq (
        Cell<T,Descriptor> const& cell,
        Array<T,SymmetricTensor<T,Descriptor>::n>& PiNeq ) const
{
    PiNeq.resetToZero();
}

template<typename T, template<typename U> class Descriptor>
void MomentumExchangeBounceBack<T,Descriptor>::computeShearStress (
        Cell<T,Descriptor> const& cell,
        Array<T,SymmetricTensor<T,Descriptor>::n>& stress ) const
{
    stress.resetToZero();
}

template<typename T, template<typename U> class Descriptor>
void MomentumExchangeBounceBack<T,Descriptor>::computeHeatFlux (
        Cell<T,Descriptor> const& cell,
        Array<T,Descriptor<T>::d>& q) const
{
    q.resetToZero();
}

template<typename T, template<typename U> class Descriptor>
void MomentumExchangeBounceBack<T,Descriptor>::computeMoment (
        Cell<T,Descriptor> const& cell, plint momentId, T* moment) const
{ }

template<typename T, template<typename U> class Descriptor>
T MomentumExchangeBounceBack<T,Descriptor>::getOmega() const {
    return T();
}

template<typename T, template<typename U> class Descriptor>
void MomentumExchangeBounceBack<T,Descriptor>::setOmega(T omega_)
{ }

template<typename T, template<typename U> class Descriptor>
T MomentumExchangeBounceBack<T,Descriptor>::computeRhoBar(Cell<T,Descriptor> const& cell) const {
    return Descriptor<T>::rhoBar(rho);
}

template<typename T, template<typename U> class Descriptor>
void MomentumExchangeBounceBack<T,Descriptor>::computeRhoBarJ (
        Cell<T,Descriptor> const& cell, T& rhoBar, Array<T,Descriptor<T>::d>& j) const
{
    rhoBar = Descriptor<T>::rhoBar(rho);
    j.resetToZero();
}

template<typename T, template<typename U> class Descriptor>
void MomentumExchangeBounceBack<T,Descriptor>::computeRhoBarJPiNeq (
        Cell<T,Descriptor> const& cell, T& rhoBar, Array<T,Descriptor<T>::d>& j,
        Array<T,SymmetricTensor<T,Descriptor>::n>& PiNeq ) const
{
    rhoBar = Descriptor<T>::rhoBar(rho);
    j.resetToZero();
    PiNeq.resetToZero();
}

template<typename T, template<typename U> class Descriptor>
T MomentumExchangeBounceBack<T,Descriptor>::computeEbar(Cell<T,Descriptor> const& cell) const
{
    return T();
}

template<typename T, template<typename U> class Descriptor>
plint MomentumExchangeBounceBack<T,Descriptor>::numDecomposedVariables(plint order) const {
    return Descriptor<T>::q + Descriptor<T>::ExternalField::numScalars;
}

template<typename T, template<typename U> class Descriptor>
void MomentumExchangeBounceBack<T,Descriptor>::decompose (
        Cell<T,Descriptor> const& cell, std::vector<T>& rawData, plint order ) const
{
    rawData.resize(numDecomposedVariables(order));
    std::fill(rawData.begin(), rawData.end(), T());
}

template<typename T, template<typename U> class Descriptor>
void MomentumExchangeBounceBack<T,Descriptor>::recompose (
        Cell<T,Descriptor>& cell, std::vector<T> const& rawData, plint order ) const
{ }

template<typename T, template<typename U> class Descriptor>
void MomentumExchangeBounceBack<T,Descriptor>::rescale (
        std::vector<T>& rawData, T xDxInv, T xDt, plint order ) const
{ }

template<typename T, template<typename U> class Descriptor>
void MomentumExchangeBounceBack<T,Descriptor>::setFluidDirections (
        std::vector<plint> const& fluidDirections_ )
{
    fluidDirections = fluidDirections_;
}

template<typename T, template<typename U> class Descriptor>
std::vector<plint> const&  MomentumExchangeBounceBack<T,Descriptor>::getFluidDirections() const
{
    return fluidDirections;
}

}  // namespace plb

#endif  // BOUNCE_BACK_MODELS_HH