This file is indexed.

/usr/include/palabos/boundaryCondition/bounceBackModels.h is in libplb-dev 1.5~r1+repack1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
/* This file is part of the Palabos library.
 *
 * Copyright (C) 2011-2015 FlowKit Sarl
 * Route d'Oron 2
 * 1010 Lausanne, Switzerland
 * E-mail contact: contact@flowkit.com
 *
 * The most recent release of Palabos can be downloaded at 
 * <http://www.palabos.org/>
 *
 * The library Palabos is free software: you can redistribute it and/or
 * modify it under the terms of the GNU Affero General Public License as
 * published by the Free Software Foundation, either version 3 of the
 * License, or (at your option) any later version.
 *
 * The library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Affero General Public License for more details.
 *
 * You should have received a copy of the GNU Affero General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
*/

/** \file
 * A collection of dynamics classes (e.g. BGK) with which a Cell object
 * can be instantiated -- header file.
 */
#ifndef BOUNCE_BACK_MODELS_H
#define BOUNCE_BACK_MODELS_H

#include "core/dynamics.h"
#include <vector>

namespace plb {

/// Implementation of "full-way bounce-back" dynamics which computes momentum exchange.
/** This is a very popular way to implement no-slip boundary conditions,
 * because the dynamics are independent of the orientation of the boundary.
 * It is a special case, because it implements no usual LB dynamics.
 * For that reason, it derives directly from the class Dynamics.
 *
 * Once they have been instantiated, MomentumExchangeBounceBack objects
 * do _not_ compute the momentum exchange right away. First, they need
 * to be initialized through a function call to one of the flavors of
 * initializeMomentumExchange().
 *
 * The code works for both 2D and 3D lattices.
 */
template<typename T, template<typename U> class Descriptor>
class MomentumExchangeBounceBack : public Dynamics<T,Descriptor> {
public:
/* *************** Construction / Destruction ************************ */

    /** You may fix a fictitious density value on bounce-back nodes via the constructor.
     *  \param forceIds_ Contains identifiers to access the reductive variables
     *  in the BlockStatistics objects, and to update the value of the total momentum
     *  exchange on the obstacle. The value of the force-ids must be determined
     *  previously by the user through a call to the method subscribeSum() of
     *  the BlockStatistics object in the used lattice. 
     */
    MomentumExchangeBounceBack(Array<plint, Descriptor<T>::d> forceIds_, T rho_=T() );
    
    MomentumExchangeBounceBack(HierarchicUnserializer& unserializer);

    /// Clone the object on its dynamic type.
    virtual MomentumExchangeBounceBack<T,Descriptor>* clone() const;
    
    /// Return a unique ID for this class.
    virtual int getId() const;
    
    virtual void serialize(HierarchicSerializer& serializer) const;

    virtual void unserialize(HierarchicUnserializer& unserializer);
    
/* *************** Collision, Equilibrium, and Non-equilibrium ******* */

    /// Implementation of the collision step
    virtual void collide(Cell<T,Descriptor>& cell,
                         BlockStatistics& statistics_);

    /// Implementation of the collision step, with imposed macroscopic variables
    virtual void collideExternal(Cell<T,Descriptor>& cell, T rhoBar,
                         Array<T,Descriptor<T>::d> const& j, T thetaBar, BlockStatistics& stat);

    /// Yields 0
    virtual T computeEquilibrium(plint iPop, T rhoBar, Array<T,Descriptor<T>::d> const& j,
                                 T jSqr, T thetaBar=T()) const;

    /// Does nothing
    virtual void regularize(Cell<T,Descriptor>& cell, T rhoBar, Array<T,Descriptor<T>::d> const& j,
                            T jSqr, Array<T,SymmetricTensor<T,Descriptor>::n> const& PiNeq, T thetaBar=T() ) const;

/* *************** Computation of macroscopic variables ************** */

    /// Yields fictitious density
    virtual T computeDensity(Cell<T,Descriptor> const& cell) const;
    /// Yields 0
    virtual T computePressure(Cell<T,Descriptor> const& cell) const;
    /// Yields 0
    virtual void computeVelocity( Cell<T,Descriptor> const& cell,
                                  Array<T,Descriptor<T>::d>& u ) const;
    /// Yields 0
    virtual T computeTemperature(Cell<T,Descriptor> const& cell) const;
    /// Yields 0
    virtual void computePiNeq (
        Cell<T,Descriptor> const& cell, Array<T,SymmetricTensor<T,Descriptor>::n>& PiNeq ) const;
    /// Yields 0
    virtual void computeShearStress (
        Cell<T,Descriptor> const& cell, Array<T,SymmetricTensor<T,Descriptor>::n>& stress ) const;
    /// Yields 0
    virtual void computeHeatFlux( Cell<T,Descriptor> const& cell,
                                  Array<T,Descriptor<T>::d>& q ) const;

    /// Does nothing
    virtual void computeMoment( Cell<T,Descriptor> const& cell,
                                plint momentId, T* moment ) const;

/* *************** Access to Dynamics variables, e.g. omega ********** */

    /// Yields 0
    virtual T getOmega() const;

    /// Does nothing
    virtual void setOmega(T omega_);

/* *************** Switch between population and moment representation ****** */

    /// Yields Descriptor<T>::q + Descriptor<T>::ExternalField::numScalars.
    virtual plint numDecomposedVariables(plint order) const;

    /// Decomposed data is identical with original cell data.
    virtual void decompose(Cell<T,Descriptor> const& cell, std::vector<T>& rawData, plint order) const;

    /// Decomposed data is identical with original cell data.
    virtual void recompose(Cell<T,Descriptor>& cell, std::vector<T> const& rawData, plint order) const;

    /// Nothing happens here.
    virtual void rescale(std::vector<T>& rawData, T xDxInv, T xDt, plint order) const;

/* *************** Additional moments, intended for internal use ***** */

    /// Yields fictitious density
    virtual T computeRhoBar(Cell<T,Descriptor> const& cell) const;

    /// Yields fictitious density and 0
    virtual void computeRhoBarJ(Cell<T,Descriptor> const& cell,
                                T& rhoBar, Array<T,Descriptor<T>::d>& j) const;

    /// Compute order-0 moment rho-bar, order-1 moment j, and order-2
    ///   off-equilibrium moment PiNeq.
    virtual void computeRhoBarJPiNeq(Cell<T,Descriptor> const& cell,
                                     T& rhoBar, Array<T,Descriptor<T>::d>& j,
                                     Array<T,SymmetricTensor<T,Descriptor>::n>& PiNeq) const;
    /// Yields 0
    virtual T computeEbar(Cell<T,Descriptor> const& cell) const;
public:
    /// Define the directions which point from the current cell into a fluid node.
    void setFluidDirections(std::vector<plint> const& fluidDirections_);
    /// Get the directions which point from the current cell into a fluid node.
    std::vector<plint> const& getFluidDirections() const;
private:
    std::vector<plint> fluidDirections;
    Array<plint, Descriptor<T>::d> forceIds;
    T rho;
private:
    static int id;
};

}  // namespace plb

#endif  // BOUNCE_BACK_MODELS_H