/usr/include/palabos/boundaryCondition/bounceBackModels.h is in libplb-dev 1.5~r1+repack1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 | /* This file is part of the Palabos library.
*
* Copyright (C) 2011-2015 FlowKit Sarl
* Route d'Oron 2
* 1010 Lausanne, Switzerland
* E-mail contact: contact@flowkit.com
*
* The most recent release of Palabos can be downloaded at
* <http://www.palabos.org/>
*
* The library Palabos is free software: you can redistribute it and/or
* modify it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of the
* License, or (at your option) any later version.
*
* The library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/** \file
* A collection of dynamics classes (e.g. BGK) with which a Cell object
* can be instantiated -- header file.
*/
#ifndef BOUNCE_BACK_MODELS_H
#define BOUNCE_BACK_MODELS_H
#include "core/dynamics.h"
#include <vector>
namespace plb {
/// Implementation of "full-way bounce-back" dynamics which computes momentum exchange.
/** This is a very popular way to implement no-slip boundary conditions,
* because the dynamics are independent of the orientation of the boundary.
* It is a special case, because it implements no usual LB dynamics.
* For that reason, it derives directly from the class Dynamics.
*
* Once they have been instantiated, MomentumExchangeBounceBack objects
* do _not_ compute the momentum exchange right away. First, they need
* to be initialized through a function call to one of the flavors of
* initializeMomentumExchange().
*
* The code works for both 2D and 3D lattices.
*/
template<typename T, template<typename U> class Descriptor>
class MomentumExchangeBounceBack : public Dynamics<T,Descriptor> {
public:
/* *************** Construction / Destruction ************************ */
/** You may fix a fictitious density value on bounce-back nodes via the constructor.
* \param forceIds_ Contains identifiers to access the reductive variables
* in the BlockStatistics objects, and to update the value of the total momentum
* exchange on the obstacle. The value of the force-ids must be determined
* previously by the user through a call to the method subscribeSum() of
* the BlockStatistics object in the used lattice.
*/
MomentumExchangeBounceBack(Array<plint, Descriptor<T>::d> forceIds_, T rho_=T() );
MomentumExchangeBounceBack(HierarchicUnserializer& unserializer);
/// Clone the object on its dynamic type.
virtual MomentumExchangeBounceBack<T,Descriptor>* clone() const;
/// Return a unique ID for this class.
virtual int getId() const;
virtual void serialize(HierarchicSerializer& serializer) const;
virtual void unserialize(HierarchicUnserializer& unserializer);
/* *************** Collision, Equilibrium, and Non-equilibrium ******* */
/// Implementation of the collision step
virtual void collide(Cell<T,Descriptor>& cell,
BlockStatistics& statistics_);
/// Implementation of the collision step, with imposed macroscopic variables
virtual void collideExternal(Cell<T,Descriptor>& cell, T rhoBar,
Array<T,Descriptor<T>::d> const& j, T thetaBar, BlockStatistics& stat);
/// Yields 0
virtual T computeEquilibrium(plint iPop, T rhoBar, Array<T,Descriptor<T>::d> const& j,
T jSqr, T thetaBar=T()) const;
/// Does nothing
virtual void regularize(Cell<T,Descriptor>& cell, T rhoBar, Array<T,Descriptor<T>::d> const& j,
T jSqr, Array<T,SymmetricTensor<T,Descriptor>::n> const& PiNeq, T thetaBar=T() ) const;
/* *************** Computation of macroscopic variables ************** */
/// Yields fictitious density
virtual T computeDensity(Cell<T,Descriptor> const& cell) const;
/// Yields 0
virtual T computePressure(Cell<T,Descriptor> const& cell) const;
/// Yields 0
virtual void computeVelocity( Cell<T,Descriptor> const& cell,
Array<T,Descriptor<T>::d>& u ) const;
/// Yields 0
virtual T computeTemperature(Cell<T,Descriptor> const& cell) const;
/// Yields 0
virtual void computePiNeq (
Cell<T,Descriptor> const& cell, Array<T,SymmetricTensor<T,Descriptor>::n>& PiNeq ) const;
/// Yields 0
virtual void computeShearStress (
Cell<T,Descriptor> const& cell, Array<T,SymmetricTensor<T,Descriptor>::n>& stress ) const;
/// Yields 0
virtual void computeHeatFlux( Cell<T,Descriptor> const& cell,
Array<T,Descriptor<T>::d>& q ) const;
/// Does nothing
virtual void computeMoment( Cell<T,Descriptor> const& cell,
plint momentId, T* moment ) const;
/* *************** Access to Dynamics variables, e.g. omega ********** */
/// Yields 0
virtual T getOmega() const;
/// Does nothing
virtual void setOmega(T omega_);
/* *************** Switch between population and moment representation ****** */
/// Yields Descriptor<T>::q + Descriptor<T>::ExternalField::numScalars.
virtual plint numDecomposedVariables(plint order) const;
/// Decomposed data is identical with original cell data.
virtual void decompose(Cell<T,Descriptor> const& cell, std::vector<T>& rawData, plint order) const;
/// Decomposed data is identical with original cell data.
virtual void recompose(Cell<T,Descriptor>& cell, std::vector<T> const& rawData, plint order) const;
/// Nothing happens here.
virtual void rescale(std::vector<T>& rawData, T xDxInv, T xDt, plint order) const;
/* *************** Additional moments, intended for internal use ***** */
/// Yields fictitious density
virtual T computeRhoBar(Cell<T,Descriptor> const& cell) const;
/// Yields fictitious density and 0
virtual void computeRhoBarJ(Cell<T,Descriptor> const& cell,
T& rhoBar, Array<T,Descriptor<T>::d>& j) const;
/// Compute order-0 moment rho-bar, order-1 moment j, and order-2
/// off-equilibrium moment PiNeq.
virtual void computeRhoBarJPiNeq(Cell<T,Descriptor> const& cell,
T& rhoBar, Array<T,Descriptor<T>::d>& j,
Array<T,SymmetricTensor<T,Descriptor>::n>& PiNeq) const;
/// Yields 0
virtual T computeEbar(Cell<T,Descriptor> const& cell) const;
public:
/// Define the directions which point from the current cell into a fluid node.
void setFluidDirections(std::vector<plint> const& fluidDirections_);
/// Get the directions which point from the current cell into a fluid node.
std::vector<plint> const& getFluidDirections() const;
private:
std::vector<plint> fluidDirections;
Array<plint, Descriptor<T>::d> forceIds;
T rho;
private:
static int id;
};
} // namespace plb
#endif // BOUNCE_BACK_MODELS_H
|