/usr/include/OTB-6.4/otbWaveletOperatorBase.h is in libotb-dev 6.4.0+dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 | /*
* Copyright (C) 2005-2017 Centre National d'Etudes Spatiales (CNES)
* Copyright (C) 2007-2012 Institut Mines Telecom / Telecom Bretagne
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef otbWaveletOperatorBase_h
#define otbWaveletOperatorBase_h
#include "itkMacro.h"
#include "itkNeighborhoodOperator.h"
// This include is needed here to define MotherWaveletOperatorEnum...
#include "otbWaveletGenerator.h"
namespace otb
{
namespace Wavelet
{
enum WaveletDirection {FORWARD = 0, INVERSE = 1};
}
/**
* \class WaveletOperatorBase
*
* \brief A NeighborhoodOperator wavelet base class
*
* This class is the mother class for any wavelet operator that requires
* "a-trou" approach for shift-invariant wavelet transform. This class has
* to be derived, it cannot be used directly since GenerateCoefficients() method
* is still pure virtual.
*
* Any wavelet operator that inherits from this WaveletOperatorBase is to be used
* as a NeighborhoodOperator that should be applied to a
* NeighborhoodIterator using the NeighborhoodInnerProduct method.
*
* It is assumed that any wavelet definition is directional.
*
* Set the level of up-sampling though SetUpSampleFactor() before calling
* CreateDirectional(). Each class that inherits from WaveletOperatorBase has
* to re-implement GenerateCoefficients().
*
* The name of the wavelet is defined here but left pure virtual. It is defined
* with the LowPass and HighPass inheritance.
*
* \sa WaveletLowPassOperator
* \sa WaveletHighPassOperator
* \sa NeighborhoodOperator
* \sa Neighborhood
*
* \ingroup Operators
*
* \ingroup OTBWavelet
*/
template <Wavelet::Wavelet TMotherWaveletOperator,
class TPixel, unsigned int VDimension,
class TAllocator = itk::NeighborhoodAllocator<TPixel> >
class ITK_EXPORT WaveletOperatorBase
: public itk::NeighborhoodOperator<TPixel, VDimension, TAllocator>
{
public:
/** Standard typedefs */
typedef WaveletOperatorBase Self;
typedef itk::NeighborhoodOperator<TPixel, VDimension, TAllocator> Superclass;
itkTypeMacro(WaveletOperatorBase, NeighborhoodOperator);
typedef typename Superclass::SizeType SizeType;
typedef Wavelet::Wavelet MotherWaveletOperatorEnumType;
itkStaticConstMacro(MotherWaveletOperator, MotherWaveletOperatorEnumType, TMotherWaveletOperator);
/** Construction */
WaveletOperatorBase() :
m_UpSampleFactor(0)
{
m_WaveletGenerator = WaveletGeneratorType::New();
}
/** Construction by copy */
WaveletOperatorBase(const Self &other)
: itk::NeighborhoodOperator<TPixel, VDimension, TAllocator> (other),
m_UpSampleFactor(other.GetUpSampleFactor())
{
m_WaveletGenerator = WaveletGeneratorType::New();
}
~WaveletOperatorBase() ITK_OVERRIDE {}
/** Assignment operator */
Self & operator =(const Self& other)
{
Superclass::operator =(other);
m_UpSampleFactor = other.GetUpSampleFactor();
return *this;
}
/**
* Get the level of up sampling of the filter
*/
unsigned int GetUpSampleFactor() const
{
return this->m_UpSampleFactor;
}
/**
* Set the level of up sampling of the filter
*/
void SetUpSampleFactor(unsigned int upSampleFactor)
{
this->m_UpSampleFactor = upSampleFactor;
}
/**
* Get the name of the wavelet when necessary
*/
virtual const char * GetWaveletName() const
{
return this->m_WaveletGenerator->GetWaveletName();
}
protected:
/**
* Prints some debugging information
*/
void PrintSelf(std::ostream& os, itk::Indent i) const ITK_OVERRIDE;
typedef WaveletGenerator<TMotherWaveletOperator> WaveletGeneratorType;
typedef typename WaveletGeneratorType::Pointer WaveletGeneratorPointerType;
/**
* Typedef support for coefficient vector type. Necessary to
* work around compiler bug on VC++.
*/
typedef typename Superclass::CoefficientVector CoefficientVector;
typedef typename Superclass::PixelType PixelType;
/**
* Perform the "a-trou" algorithm for shift-invariant transformation.
* It transforms the filter \f$ H(z) \f$ into \f$ H(z^2) \f$.
*/
void UpSamplingCoefficients(CoefficientVector& coeff);
/**
* Performs filter reversion, ie. \f$ H(z^{-1}) \f$.
*/
void RevertFilter(CoefficientVector& coeff);
/**
* Performs the definition of high pass filter in an orthogonal framework
* It follows conjugate quadrature filter (CQF) of the chapter 5 of
* "Ten Lecture on Wavelets", of Ingrid Daubechies,
* Society for Industrial and Applied Mathematics, 1992.
*
* It defines filter coefficients as \f$ G(z) = z H(-z^{-1}) \f$.
* According to Daubechies'notation, it concerns the synthesis (Inverse)
* part of the filter banc.
*/
void GenerateInverseHighPassFilterFromLowPassFilter(CoefficientVector& coeff);
/**
* Performs the definition of low pass filter in the reconstruction
* step of the conjugate quadrature filter (CQF) framework.
*
* It defines filter coefficients as \f$ {\tilde H}(z) = G(-z) \f$.
*/
void GenerateInverseLowPassFilterFromHighPassFilter(CoefficientVector& coeff);
/**
* Reduce extra zeros on filters
*/
void ReduceFilterLength(CoefficientVector& coeff);
/** Arranges coefficients spatially in the memory buffer. */
void Fill(const CoefficientVector& coeff) ITK_OVERRIDE
{
this->FillCenteredDirectional(coeff);
}
#if 0
/**
* Performs the definition of high pass filter from low pass in a
* bi-orthogonal framework (ie. Quadrature mirror filter).
* It defines filter coefficients as \f$ g_n = (-1)^{n+1} h_{-n} \f$
*/
void GetHighPassFilterFromQuadratureLowPassFilter(CoefficientVector& coeff)
{
unsigned int length = coeff.size();
CoefficientVector highPassCoeff (length);
int medianPosition = static_cast<int>(length) / 2;
highPassCoeff[medianPosition] = -coeff[medianPosition];
double sign = 1.;
for (int i = 1; i <= medianPosition; ++i)
{
highPassCoeff[medianPosition + i] = sign * coeff[medianPosition - i];
highPassCoeff[medianPosition - i] = sign * coeff[medianPosition + i];
sign *= -1.;
}
coeff = highPassCoeff;
}
/**
* Performs the definition of synthesis filter from analysis one.
* Input is the forward low pass filter coefficients.
* It performs \f$ {\tilde G}(z) = -H(-z) \f$.
*/
void GetInverseHighPassFilterFromForwardLowPassFilter(CoefficientVector& coeff)
{
unsigned long length = static_cast<unsigned long>(coeff.size());
unsigned long medianPosition = length / 2;
// Wavelet coefficients are always of add size, so that 2*medianPosition < length
coeff[medianPosition] *= -1.;
for (unsigned int i = 2; i <= medianPosition; i += 2)
{
coeff[medianPosition + i] *= -1.;
coeff[medianPosition - i] *= -1.;
}
}
/**
* Performs the definition of synthesis filter from analysis one.
* Input is the forward high pass filter coefficients. It is valid
* for orthogonal and biorthogonal cases.
* It performs \f$ {\tilde H}(z) = G(-z) \f$.
*/
void GetInverseLowPassFilterFromForwardHighPassFilter(CoefficientVector& coeff)
{
unsigned long length = static_cast<unsigned long>(coeff.size());
unsigned long medianPosition = length / 2;
// Wavelet coefficients are always of add size, so that 2*medianPosition < length
for (unsigned int i = 1; i <= medianPosition; i += 2)
{
coeff[medianPosition + i] *= -1.;
coeff[medianPosition - i] *= -1.;
}
}
/**
* Performs the definition of high pass filter from the inverse low pass one
* in a Quadrature Mirror Filter bank framework. It is then valid to
* define high pass filters from orthogonal and biorthogonal wavelets...
* Input are the inverse low pass filter coefficients.
* It performs \f$ G(z) = {\tilde H}(-z)\f$.
*/
void GetForwardHighPassFilterFromInverseLowPassFilter(CoefficientVector& coeff)
{
GetInverseLowPassFilterFromForwardHighPassFilter(coeff);
}
#endif
unsigned int m_UpSampleFactor;
WaveletGeneratorPointerType m_WaveletGenerator;
};
} // end of namespace otb
#ifndef OTB_MANUAL_INSTANTIATION
#include "otbWaveletOperatorBase.txx"
#endif
#endif
|