This file is indexed.

/usr/include/OTB-6.4/otbTrainNeuralNetwork.txx is in libotb-dev 6.4.0+dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
/*
 * Copyright (C) 2005-2017 Centre National d'Etudes Spatiales (CNES)
 *
 * This file is part of Orfeo Toolbox
 *
 *     https://www.orfeo-toolbox.org/
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef otbTrainNeuralNetwork_txx
#define otbTrainNeuralNetwork_txx
#include <boost/lexical_cast.hpp>
#include "otbLearningApplicationBase.h"
#include "otbNeuralNetworkMachineLearningModel.h"

namespace otb
{
namespace Wrapper
{

template <class TInputValue, class TOutputValue>
void
LearningApplicationBase<TInputValue,TOutputValue>
::InitNeuralNetworkParams()
{
  AddChoice("classifier.ann", "Artificial Neural Network classifier");
  SetParameterDescription("classifier.ann",
    "This group of parameters allows setting Artificial Neural Network "
    "classifier parameters. See complete documentation here "
    "\\url{http://docs.opencv.org/modules/ml/doc/neural_networks.html}.");

  //TrainMethod
  AddParameter(ParameterType_Choice, "classifier.ann.t", "Train Method Type");
  AddChoice("classifier.ann.t.back", "Back-propagation algorithm");
  SetParameterDescription("classifier.ann.t.back",
    "Method to compute the gradient of the loss function and adjust weights "
    "in the network to optimize the result.");
  AddChoice("classifier.ann.t.reg", "Resilient Back-propagation algorithm");
  SetParameterDescription("classifier.ann.t.reg",
    "Almost the same as the Back-prop algorithm except that it does not "
    "take into account the magnitude of the partial derivative (coordinate "
    "of the gradient) but only its sign.");

  SetParameterString("classifier.ann.t", "reg", false);
  SetParameterDescription("classifier.ann.t", 
    "Type of training method for the multilayer perceptron (MLP) neural network.");

  //LayerSizes
  //There is no ParameterType_IntList, so i use a ParameterType_StringList and convert it.
  /*std::vector<std::string> layerSizes;
   layerSizes.push_back("100");
   layerSizes.push_back("100"); */
  AddParameter(ParameterType_StringList, "classifier.ann.sizes", 
    "Number of neurons in each intermediate layer");
  //SetParameterStringList("classifier.ann.sizes", layerSizes);
  SetParameterDescription("classifier.ann.sizes",
    "The number of neurons in each intermediate layer (excluding input and output layers).");

  //ActivateFunction
  AddParameter(ParameterType_Choice, "classifier.ann.f", 
    "Neuron activation function type");
  AddChoice("classifier.ann.f.ident", "Identity function");
  AddChoice("classifier.ann.f.sig", "Symmetrical Sigmoid function");
  AddChoice("classifier.ann.f.gau", "Gaussian function (Not completely supported)");
  SetParameterString("classifier.ann.f", "sig", false);
  SetParameterDescription("classifier.ann.f", 
    "This function determine whether the output of the node is positive or not "
    "depending on the output of the transfert function.");

  //Alpha
  AddParameter(ParameterType_Float, "classifier.ann.a", 
    "Alpha parameter of the activation function");
  SetParameterFloat("classifier.ann.a",1., false);
  SetParameterDescription("classifier.ann.a",
    "Alpha parameter of the activation function (used only with sigmoid and gaussian functions).");

  //Beta
  AddParameter(ParameterType_Float, "classifier.ann.b", 
    "Beta parameter of the activation function");
  SetParameterFloat("classifier.ann.b",1., false);
  SetParameterDescription("classifier.ann.b",
    "Beta parameter of the activation function (used only with sigmoid and gaussian functions).");

  //BackPropDWScale
  AddParameter(ParameterType_Float, "classifier.ann.bpdw",
    "Strength of the weight gradient term in the BACKPROP method");
  SetParameterFloat("classifier.ann.bpdw",0.1, false);
  SetParameterDescription("classifier.ann.bpdw",
    "Strength of the weight gradient term in the BACKPROP method. The "
    "recommended value is about 0.1.");

  //BackPropMomentScale
  AddParameter(ParameterType_Float, "classifier.ann.bpms",
    "Strength of the momentum term (the difference between weights on the 2 previous iterations)");
  SetParameterFloat("classifier.ann.bpms",0.1, false);
  SetParameterDescription("classifier.ann.bpms",
    "Strength of the momentum term (the difference between weights on the 2 previous "
    "iterations). This parameter provides some inertia to smooth the random "
    "fluctuations of the weights. It can vary from 0 (the feature is disabled) "
    "to 1 and beyond. The value 0.1 or so is good enough.");

  //RegPropDW0
  AddParameter(ParameterType_Float, "classifier.ann.rdw",
    "Initial value Delta_0 of update-values Delta_{ij} in RPROP method");
  SetParameterFloat("classifier.ann.rdw",0.1, false);
  SetParameterDescription("classifier.ann.rdw",
    "Initial value Delta_0 of update-values Delta_{ij} in RPROP method (default = 0.1).");

  //RegPropDWMin
  AddParameter(ParameterType_Float, "classifier.ann.rdwm",
    "Update-values lower limit Delta_{min} in RPROP method");
  SetParameterFloat("classifier.ann.rdwm",1e-7, false);
  SetParameterDescription("classifier.ann.rdwm",
    "Update-values lower limit Delta_{min} in RPROP method. It must be positive "
    "(default = 1e-7).");

  //TermCriteriaType
  AddParameter(ParameterType_Choice, "classifier.ann.term", "Termination criteria");
  AddChoice("classifier.ann.term.iter", "Maximum number of iterations");
  SetParameterDescription("classifier.ann.term.iter", 
    "Set the number of iterations allowed to the network for its "
    "training. Training will stop regardless of the result when this "
    "number is reached");
  AddChoice("classifier.ann.term.eps", "Epsilon");
  SetParameterDescription("classifier.ann.term.eps", 
    "Training will focus on result and will stop once the precision is"
    "at most epsilon");
  AddChoice("classifier.ann.term.all", "Max. iterations + Epsilon");
  SetParameterDescription("classifier.ann.term.all", 
    "Both termination criteria are used. Training stop at the first reached");
  SetParameterString("classifier.ann.term", "all", false);
  SetParameterDescription("classifier.ann.term", "Termination criteria.");

  //Epsilon
  AddParameter(ParameterType_Float, "classifier.ann.eps",
    "Epsilon value used in the Termination criteria");
  SetParameterFloat("classifier.ann.eps",0.01, false);
  SetParameterDescription("classifier.ann.eps",
    "Epsilon value used in the Termination criteria.");

  //MaxIter
  AddParameter(ParameterType_Int, "classifier.ann.iter",
    "Maximum number of iterations used in the Termination criteria");
  SetParameterInt("classifier.ann.iter",1000, false);
  SetParameterDescription("classifier.ann.iter",
    "Maximum number of iterations used in the Termination criteria.");

}

template <class TInputValue, class TOutputValue>
void
LearningApplicationBase<TInputValue,TOutputValue>
::TrainNeuralNetwork(typename ListSampleType::Pointer trainingListSample,
                     typename TargetListSampleType::Pointer trainingLabeledListSample,
                     std::string modelPath)
{
  typedef otb::NeuralNetworkMachineLearningModel<InputValueType, OutputValueType> NeuralNetworkType;
  typename NeuralNetworkType::Pointer classifier = NeuralNetworkType::New();
  classifier->SetRegressionMode(this->m_RegressionFlag);
  classifier->SetInputListSample(trainingListSample);
  classifier->SetTargetListSample(trainingLabeledListSample);

  switch (GetParameterInt("classifier.ann.t"))
    {
    case 0: // BACKPROP
      classifier->SetTrainMethod(CvANN_MLP_TrainParams::BACKPROP);
      break;
    case 1: // RPROP
      classifier->SetTrainMethod(CvANN_MLP_TrainParams::RPROP);
      break;
    default: // DEFAULT = RPROP
      classifier->SetTrainMethod(CvANN_MLP_TrainParams::RPROP);
      break;
    }

  std::vector<unsigned int> layerSizes;
  std::vector<std::string> sizes = GetParameterStringList("classifier.ann.sizes");


  unsigned int nbImageBands = trainingListSample->GetMeasurementVectorSize();
  layerSizes.push_back(nbImageBands);
  for (unsigned int i = 0; i < sizes.size(); i++)
    {
    unsigned int nbNeurons = boost::lexical_cast<unsigned int>(sizes[i]);
    layerSizes.push_back(nbNeurons);
    }


  unsigned int nbClasses = 0;
  if (this->m_RegressionFlag)
    {
    layerSizes.push_back(1);
    }
  else
    {
    std::set<TargetValueType> labelSet;
    TargetSampleType currentLabel;
    for (unsigned int itLab = 0; itLab < trainingLabeledListSample->Size(); ++itLab)
      {
      currentLabel = trainingLabeledListSample->GetMeasurementVector(itLab);
      labelSet.insert(currentLabel[0]);
      }
    nbClasses = labelSet.size();
    layerSizes.push_back(nbClasses);
    }

  classifier->SetLayerSizes(layerSizes);

  switch (GetParameterInt("classifier.ann.f"))
    {
    case 0: // ident
      classifier->SetActivateFunction(CvANN_MLP::IDENTITY);
      break;
    case 1: // sig
      classifier->SetActivateFunction(CvANN_MLP::SIGMOID_SYM);
      break;
    case 2: // gaussian
      classifier->SetActivateFunction(CvANN_MLP::GAUSSIAN);
      break;
    default: // DEFAULT = RPROP
      classifier->SetActivateFunction(CvANN_MLP::SIGMOID_SYM);
      break;
    }

  classifier->SetAlpha(GetParameterFloat("classifier.ann.a"));
  classifier->SetBeta(GetParameterFloat("classifier.ann.b"));
  classifier->SetBackPropDWScale(GetParameterFloat("classifier.ann.bpdw"));
  classifier->SetBackPropMomentScale(GetParameterFloat("classifier.ann.bpms"));
  classifier->SetRegPropDW0(GetParameterFloat("classifier.ann.rdw"));
  classifier->SetRegPropDWMin(GetParameterFloat("classifier.ann.rdwm"));

  switch (GetParameterInt("classifier.ann.term"))
    {
    case 0: // CV_TERMCRIT_ITER
      classifier->SetTermCriteriaType(CV_TERMCRIT_ITER);
      break;
    case 1: // CV_TERMCRIT_EPS
      classifier->SetTermCriteriaType(CV_TERMCRIT_EPS);
      break;
    case 2: // CV_TERMCRIT_ITER + CV_TERMCRIT_EPS
      classifier->SetTermCriteriaType(CV_TERMCRIT_ITER + CV_TERMCRIT_EPS);
      break;
    default: // DEFAULT = CV_TERMCRIT_ITER + CV_TERMCRIT_EPS
      classifier->SetTermCriteriaType(CV_TERMCRIT_ITER + CV_TERMCRIT_EPS);
      break;
    }
  classifier->SetEpsilon(GetParameterFloat("classifier.ann.eps"));
  classifier->SetMaxIter(GetParameterInt("classifier.ann.iter"));
  classifier->Train();
  classifier->Save(modelPath);
}

} //end namespace wrapper
} //end namespace otb

#endif