/usr/include/OTB-6.4/otbTrainLibSVM.txx is in libotb-dev 6.4.0+dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 | /*
* Copyright (C) 2005-2017 Centre National d'Etudes Spatiales (CNES)
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef otbTrainLibSVM_txx
#define otbTrainLibSVM_txx
#include "otbLearningApplicationBase.h"
#include "otbLibSVMMachineLearningModel.h"
namespace otb
{
namespace Wrapper
{
template <class TInputValue, class TOutputValue>
void
LearningApplicationBase<TInputValue,TOutputValue>
::InitLibSVMParams()
{
AddChoice("classifier.libsvm", "LibSVM classifier");
SetParameterDescription("classifier.libsvm", "This group of parameters allows setting SVM classifier parameters.");
AddParameter(ParameterType_Choice, "classifier.libsvm.k", "SVM Kernel Type");
AddChoice("classifier.libsvm.k.linear", "Linear");
SetParameterDescription("classifier.libsvm.k.linear",
"Linear Kernel, no mapping is done, this is the fastest option.");
AddChoice("classifier.libsvm.k.rbf", "Gaussian radial basis function");
SetParameterDescription("classifier.libsvm.k.rbf",
"This kernel is a good choice in most of the case. It is "
"an exponential function of the euclidian distance between "
"the vectors.");
AddChoice("classifier.libsvm.k.poly", "Polynomial");
SetParameterDescription("classifier.libsvm.k.poly",
"Polynomial Kernel, the mapping is a polynomial function.");
AddChoice("classifier.libsvm.k.sigmoid", "Sigmoid");
SetParameterDescription("classifier.libsvm.k.sigmoid",
"The kernel is a hyperbolic tangente function of the vectors.");
SetParameterString("classifier.libsvm.k", "linear", false);
SetParameterDescription("classifier.libsvm.k", "SVM Kernel Type.");
AddParameter(ParameterType_Choice, "classifier.libsvm.m", "SVM Model Type");
SetParameterDescription("classifier.libsvm.m", "Type of SVM formulation.");
if (this->m_RegressionFlag)
{
AddChoice("classifier.libsvm.m.epssvr", "Epsilon Support Vector Regression");
SetParameterDescription("classifier.libsvm.m.epssvr",
"The distance between feature vectors from the training set and the "
"fitting hyper-plane must be less than Epsilon. For outliers the penalty "
"multiplier C is used ");
AddChoice("classifier.libsvm.m.nusvr", "Nu Support Vector Regression");
SetParameterString("classifier.libsvm.m", "epssvr", false);
SetParameterDescription("classifier.libsvm.m.nusvr",
"Same as the epsilon regression except that this time the bounded "
"parameter nu is used instead of epsilon");
}
else
{
AddChoice("classifier.libsvm.m.csvc", "C support vector classification");
SetParameterDescription("classifier.libsvm.m.csvc",
"This formulation allows imperfect separation of classes. The penalty "
"is set through the cost parameter C.");
AddChoice("classifier.libsvm.m.nusvc", "Nu support vector classification");
SetParameterDescription("classifier.libsvm.m.nusvc",
"This formulation allows imperfect separation of classes. The penalty "
"is set through the cost parameter Nu. As compared to C, Nu is harder "
"to optimize, and may not be as fast.");
AddChoice("classifier.libsvm.m.oneclass", "Distribution estimation (One Class SVM)");
SetParameterDescription("classifier.libsvm.m.oneclass",
"All the training data are from the same class, SVM builds a boundary "
"that separates the class from the rest of the feature space.");
SetParameterString("classifier.libsvm.m", "csvc", false);
}
AddParameter(ParameterType_Float, "classifier.libsvm.c", "Cost parameter C");
SetParameterFloat("classifier.libsvm.c",1.0, false);
SetParameterDescription("classifier.libsvm.c",
"SVM models have a cost parameter C (1 by default) to control the "
"trade-off between training errors and forcing rigid margins.");
AddParameter(ParameterType_Float, "classifier.libsvm.nu", "Cost parameter Nu");
SetParameterFloat("classifier.libsvm.nu",0.5, false);
SetParameterDescription("classifier.libsvm.nu",
"Cost parameter Nu, in the range 0..1, the larger the value, "
"the smoother the decision.");
// It seems that it miss a nu parameter for the nu-SVM use.
AddParameter(ParameterType_Empty, "classifier.libsvm.opt", "Parameters optimization");
MandatoryOff("classifier.libsvm.opt");
SetParameterDescription("classifier.libsvm.opt", "SVM parameters optimization flag.");
AddParameter(ParameterType_Empty, "classifier.libsvm.prob", "Probability estimation");
MandatoryOff("classifier.libsvm.prob");
SetParameterDescription("classifier.libsvm.prob", "Probability estimation flag.");
if (this->m_RegressionFlag)
{
AddParameter(ParameterType_Float, "classifier.libsvm.eps", "Epsilon");
SetParameterFloat("classifier.libsvm.eps",1e-3, false);
SetParameterDescription("classifier.libsvm.eps",
"The distance between feature vectors from the training set and "
"the fitting hyper-plane must be less than Epsilon. For outliers"
"the penalty mutliplier is set by C.");
}
}
template <class TInputValue, class TOutputValue>
void
LearningApplicationBase<TInputValue,TOutputValue>
::TrainLibSVM(typename ListSampleType::Pointer trainingListSample,
typename TargetListSampleType::Pointer trainingLabeledListSample,
std::string modelPath)
{
typedef otb::LibSVMMachineLearningModel<InputValueType, OutputValueType> LibSVMType;
typename LibSVMType::Pointer libSVMClassifier = LibSVMType::New();
libSVMClassifier->SetRegressionMode(this->m_RegressionFlag);
libSVMClassifier->SetInputListSample(trainingListSample);
libSVMClassifier->SetTargetListSample(trainingLabeledListSample);
//SVM Option
//TODO : Add other options ?
if (IsParameterEnabled("classifier.libsvm.opt"))
{
libSVMClassifier->SetParameterOptimization(true);
}
if (IsParameterEnabled("classifier.libsvm.prob"))
{
libSVMClassifier->SetDoProbabilityEstimates(true);
}
libSVMClassifier->SetNu(GetParameterFloat("classifier.libsvm.nu"));
libSVMClassifier->SetC(GetParameterFloat("classifier.libsvm.c"));
switch (GetParameterInt("classifier.libsvm.k"))
{
case 0: // LINEAR
libSVMClassifier->SetKernelType(LINEAR);
break;
case 1: // RBF
libSVMClassifier->SetKernelType(RBF);
break;
case 2: // POLY
libSVMClassifier->SetKernelType(POLY);
break;
case 3: // SIGMOID
libSVMClassifier->SetKernelType(SIGMOID);
break;
default: // DEFAULT = LINEAR
libSVMClassifier->SetKernelType(LINEAR);
break;
}
if (this->m_RegressionFlag)
{
switch (GetParameterInt("classifier.libsvm.m"))
{
case 0: // EPSILON_SVR
libSVMClassifier->SetSVMType(EPSILON_SVR);
break;
case 1: // NU_SVR
libSVMClassifier->SetSVMType(NU_SVR);
break;
default:
libSVMClassifier->SetSVMType(EPSILON_SVR);
break;
}
libSVMClassifier->SetEpsilon(GetParameterFloat("classifier.libsvm.eps"));
}
else
{
switch (GetParameterInt("classifier.libsvm.m"))
{
case 0: // C_SVC
libSVMClassifier->SetSVMType(C_SVC);
break;
case 1: // NU_SVC
libSVMClassifier->SetSVMType(NU_SVC);
break;
case 2: // ONE_CLASS
libSVMClassifier->SetSVMType(ONE_CLASS);
break;
default:
libSVMClassifier->SetSVMType(C_SVC);
break;
}
}
libSVMClassifier->Train();
libSVMClassifier->Save(modelPath);
}
} //end namespace wrapper
} //end namespace otb
#endif
|