This file is indexed.

/usr/include/OTB-6.4/otbStereorectificationDisplacementFieldSource.txx is in libotb-dev 6.4.0+dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
/*
 * Copyright (C) 2005-2017 Centre National d'Etudes Spatiales (CNES)
 *
 * This file is part of Orfeo Toolbox
 *
 *     https://www.orfeo-toolbox.org/
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef otbStereoSensorModelToElevationMapFilter_txx
#define otbStereoSensorModelToElevationMapFilter_txx

#include "otbStereorectificationDisplacementFieldSource.h"
#include "itkProgressReporter.h"
#include "otbMath.h"

// For partial specialization
#include "otbVectorImage.h"

#include "otbDEMHandler.h"

namespace otb
{

template <class TInputImage, class TOutputImage>
StereorectificationDisplacementFieldSource<TInputImage, TOutputImage>
::StereorectificationDisplacementFieldSource() :
  m_ElevationOffset(50),
  m_Scale(1),
  m_GridStep(1),
  m_LeftImage(),
  m_RightImage(),
  m_LeftToRightTransform(),
  m_RightToLeftTransform(),
  m_OutputOriginInLeftImage(),
  m_MeanBaselineRatio(0),
  m_UseDEM(false)
{
  // Set the number of outputs to 2 (one deformation field for each
  // image)
  this->SetNumberOfRequiredOutputs(2);

  // Create the 2nd input (not created by default)
  this->SetNthOutput(0, OutputImageType::New());
  this->SetNthOutput(1, OutputImageType::New());

  // Build the RS Transforms
  m_LeftToRightTransform = RSTransformType::New();
  m_RightToLeftTransform = RSTransformType::New();
}

template <class TInputImage, class TOutputImage>
const typename StereorectificationDisplacementFieldSource<TInputImage, TOutputImage>
::OutputImageType *
StereorectificationDisplacementFieldSource<TInputImage, TOutputImage>
::GetLeftDisplacementFieldOutput() const
{
  if (this->GetNumberOfOutputs() < 1)
    {
    return 0;
    }
  return static_cast<const OutputImageType *>(this->itk::ProcessObject::GetOutput(0));
}

template <class TInputImage, class TOutputImage>
typename StereorectificationDisplacementFieldSource<TInputImage, TOutputImage>
::OutputImageType *
StereorectificationDisplacementFieldSource<TInputImage, TOutputImage>
::GetLeftDisplacementFieldOutput()
{
  if (this->GetNumberOfOutputs() < 1)
    {
    return ITK_NULLPTR;
    }
  return static_cast<OutputImageType *>(this->itk::ProcessObject::GetOutput(0));
}

template <class TInputImage, class TOutputImage>
const typename StereorectificationDisplacementFieldSource<TInputImage, TOutputImage>
::OutputImageType *
StereorectificationDisplacementFieldSource<TInputImage, TOutputImage>
::GetRightDisplacementFieldOutput() const
{
  if (this->GetNumberOfOutputs() < 2)
    {
    return 0;
    }
  return static_cast<const OutputImageType *>(this->itk::ProcessObject::GetOutput(1));
}

template <class TInputImage, class TOutputImage>
typename StereorectificationDisplacementFieldSource<TInputImage, TOutputImage>
::OutputImageType *
StereorectificationDisplacementFieldSource<TInputImage, TOutputImage>
::GetRightDisplacementFieldOutput()
{
  if (this->GetNumberOfOutputs() < 2)
    {
    return ITK_NULLPTR;
    }
  return static_cast<OutputImageType *>(this->itk::ProcessObject::GetOutput(1));
}

template <class TInputImage, class TOutputImage>
void
StereorectificationDisplacementFieldSource<TInputImage, TOutputImage>
::GenerateOutputInformation()
{
  //Superclass::GenerateOutputInformation();

  // Ensure that both left image and right image are available
  if(m_LeftImage.IsNull() || m_RightImage.IsNull())
    {
    itkExceptionMacro(<<"Either left image or right image pointer is null, can not perform stereo-rectification.");
    }

  // Ensure input images have up-to-date information
  m_LeftImage->UpdateOutputInformation();
  m_RightImage->UpdateOutputInformation();

  // Setup the DEM handler if needed
  typename DEMHandler::Pointer demHandler = DEMHandler::Instance();

  // Set-up a transform to use the DEMHandler
  typedef otb::GenericRSTransform<> RSTransform2DType;
  RSTransform2DType::Pointer leftToGroundTransform = RSTransform2DType::New();
  leftToGroundTransform->SetInputKeywordList(m_LeftImage->GetImageKeywordlist());

  leftToGroundTransform->InstantiateTransform();

  // Retrieve the deformation field pointers
  OutputImageType * leftDFPtr = this->GetLeftDisplacementFieldOutput();
  OutputImageType * rightDFPtr = this->GetRightDisplacementFieldOutput();

  // Set up  the RS transforms
  m_LeftToRightTransform->SetInputKeywordList(m_LeftImage->GetImageKeywordlist());
  m_LeftToRightTransform->SetOutputKeywordList(m_RightImage->GetImageKeywordlist());
  m_LeftToRightTransform->InstantiateTransform();

  m_RightToLeftTransform->SetInputKeywordList(m_RightImage->GetImageKeywordlist());
  m_RightToLeftTransform->SetOutputKeywordList(m_LeftImage->GetImageKeywordlist());
  m_RightToLeftTransform->InstantiateTransform();

  // Now, we must determine the optimized size, spacing and origin of the
  // stereo-rectified images, as well as the position of the origin in
  // the left image

  // First, spacing : choose a square spacing,
  SpacingType outputSpacing;
  outputSpacing.Fill(m_Scale * m_GridStep);
  double mean_spacing=0.5*(vcl_abs(m_LeftImage->GetSignedSpacing()[0])+vcl_abs(m_LeftImage->GetSignedSpacing()[1]));
  //double ratio_x = mean_spacing / vcl_abs(m_LeftImage->GetSignedSpacing()[0]);
  //double ratio_y = mean_spacing / vcl_abs(m_LeftImage->GetSignedSpacing()[1]);

  outputSpacing[0]*=mean_spacing;
  outputSpacing[1]*=mean_spacing;

  // Then, we retrieve the origin of the left input image
  double localElevation = otb::DEMHandler::Instance()->GetDefaultHeightAboveEllipsoid();

  if(m_UseDEM)
    {
    RSTransform2DType::InputPointType tmpPoint;
    localElevation = demHandler->GetHeightAboveEllipsoid(leftToGroundTransform->TransformPoint(m_LeftImage->GetOrigin()));
    }

  TDPointType leftInputOrigin;
  leftInputOrigin[0] = m_LeftImage->GetOrigin()[0];
  leftInputOrigin[1] = m_LeftImage->GetOrigin()[1];
  leftInputOrigin[2] = localElevation;

  // Next, we will compute the parameters of the local epipolar line
  // at the left image origin
  TDPointType rightEpiPoint, leftEpiLineStart, leftEpiLineEnd;

  // This point is the image of the left input image origin at the
  // average elevation
  rightEpiPoint = m_LeftToRightTransform->TransformPoint(leftInputOrigin);

  // The beginning of the epipolar line in the left image is the image
  // of rightEpiPoint at a lower elevation (using the offset)
  rightEpiPoint[2] = localElevation - m_ElevationOffset;
  leftEpiLineStart = m_RightToLeftTransform->TransformPoint(rightEpiPoint);

  // The ending of the epipolar line in the left image is the image
  // of rightEpiPoint at a higher elevation (using the offset)
  rightEpiPoint[2] = localElevation + m_ElevationOffset;
  leftEpiLineEnd = m_RightToLeftTransform->TransformPoint(rightEpiPoint);

  // Now, we can compute the equation of the epipolar line y = a*x+b
  // epipolar angle is computed in left image physical space
  double alpha = 0;
  if (leftEpiLineEnd[0] == leftEpiLineStart[0])
    {
    if (leftEpiLineEnd[1] > leftEpiLineStart[1])
      {
      alpha = 0.5*otb::CONST_PI;
      }
    else
      {
      alpha = -0.5*otb::CONST_PI;
      }
    }
  else
    {
    double a = (leftEpiLineEnd[1] - leftEpiLineStart[1])
             / (leftEpiLineEnd[0] - leftEpiLineStart[0]);
    if (leftEpiLineEnd[0] > leftEpiLineStart[0])
      {
      alpha = vcl_atan(a);
      }
    else
      {
      alpha = otb::CONST_PI + vcl_atan(a);
      }

    }

  // And compute the unitary vectors of the new axis (equivalent to
  // the column of the rotation matrix)
  // TODO: Check if we need to use the input image spacing here
  double ux =   vcl_cos(alpha);
  double uy =   vcl_sin(alpha);
  double vx = - vcl_sin(alpha);
  double vy =   vcl_cos(alpha);

  // Now, we will compute the bounding box of the left input image in
  // this rotated geometry

  // First we compute coordinates of the 4 corners (we omit ulx which
  // coordinates are {0,0})
  double urx = ux * m_LeftImage->GetLargestPossibleRegion().GetSize()[0] * m_LeftImage->GetSignedSpacing()[0];
  double ury = vx * m_LeftImage->GetLargestPossibleRegion().GetSize()[0] * m_LeftImage->GetSignedSpacing()[0];
  double llx = uy * m_LeftImage->GetLargestPossibleRegion().GetSize()[1] * m_LeftImage->GetSignedSpacing()[1];
  double lly = vy * m_LeftImage->GetLargestPossibleRegion().GetSize()[1] * m_LeftImage->GetSignedSpacing()[1];
  double lrx = ux * m_LeftImage->GetLargestPossibleRegion().GetSize()[0] * m_LeftImage->GetSignedSpacing()[0]
             + uy * m_LeftImage->GetLargestPossibleRegion().GetSize()[1] * m_LeftImage->GetSignedSpacing()[1];
  double lry = vx * m_LeftImage->GetLargestPossibleRegion().GetSize()[0] * m_LeftImage->GetSignedSpacing()[0]
             + vy * m_LeftImage->GetLargestPossibleRegion().GetSize()[1] * m_LeftImage->GetSignedSpacing()[1];

  // Bounding box (this time we do not omit ulx)
  double minx = std::min(std::min(std::min(urx,llx),lrx),0.);
  double miny = std::min(std::min(std::min(ury,lly),lry),0.);
  double maxx = std::max(std::max(std::max(urx,llx),lrx),0.);
  double maxy = std::max(std::max(std::max(ury,lly),lry),0.);

  // We can now estimate the output image size, taking into account
  // the scale parameter
  m_RectifiedImageSize[0] = static_cast<unsigned int>((maxx-minx)/(mean_spacing*m_Scale));
  m_RectifiedImageSize[1] = static_cast<unsigned int>((maxy-miny)/(mean_spacing*m_Scale));

  // Now, we can compute the origin of the epipolar images in the left
  // input image geometry (we rotate back)
  m_OutputOriginInLeftImage[0] = leftInputOrigin[0] + (ux * minx + vx * miny);
  m_OutputOriginInLeftImage[1] = leftInputOrigin[1] + (uy * minx + vy * miny);
  m_OutputOriginInLeftImage[2] = localElevation;

  // And also the size of the deformation field
  SizeType outputSize;
  outputSize[0] = (m_RectifiedImageSize[0] / m_GridStep + 2 );
  outputSize[1] = (m_RectifiedImageSize[1] / m_GridStep + 2);

  // Build the output largest region
  RegionType outputLargestRegion;
  outputLargestRegion.SetSize(outputSize);

  // Update the information
  leftDFPtr->SetLargestPossibleRegion(outputLargestRegion);
  rightDFPtr->SetLargestPossibleRegion(outputLargestRegion);

  leftDFPtr->SetSignedSpacing(outputSpacing);
  rightDFPtr->SetSignedSpacing(outputSpacing);

  leftDFPtr->SetNumberOfComponentsPerPixel(2);
  rightDFPtr->SetNumberOfComponentsPerPixel(2);
}

template <class TInputImage, class TOutputImage>
void
StereorectificationDisplacementFieldSource<TInputImage, TOutputImage>
::EnlargeOutputRequestedRegion(itk::DataObject * output)
{
  // Call superclass
  Superclass::EnlargeOutputRequestedRegion(output);

  // Retrieve the deformation field pointers
  OutputImageType * leftDFPtr = this->GetLeftDisplacementFieldOutput();
  OutputImageType * rightDFPtr = this->GetRightDisplacementFieldOutput();

  // Prevent from streaming
  leftDFPtr->SetRequestedRegionToLargestPossibleRegion();
  rightDFPtr->SetRequestedRegionToLargestPossibleRegion();
}

template <class TInputImage, class TOutputImage>
void
StereorectificationDisplacementFieldSource<TInputImage, TOutputImage>
::GenerateData()
{
  // Allocate the output
  this->AllocateOutputs();

  // Setup the DEM handler if needed
  typename DEMHandler::Pointer demHandler = DEMHandler::Instance();

  // Set-up a transform to use the DEMHandler
  typedef otb::GenericRSTransform<> RSTransform2DType;
  RSTransform2DType::Pointer leftToGroundTransform = RSTransform2DType::New();

  leftToGroundTransform->SetInputKeywordList(m_LeftImage->GetImageKeywordlist());

  leftToGroundTransform->InstantiateTransform();

  // Retrieve the output pointers
  OutputImageType * leftDFPtr = this->GetLeftDisplacementFieldOutput();
  OutputImageType * rightDFPtr = this->GetRightDisplacementFieldOutput();

  // Declare all the TDPoint variables we will need
  TDPointType currentPoint1, currentPoint2,nextLineStart1,nextLineStart2, startLine1, endLine1, startLine2, endLine2, epiPoint1, epiPoint2;

  // Then, we retrieve the origin of the left input image
  double localElevation = otb::DEMHandler::Instance()->GetDefaultHeightAboveEllipsoid();

  // Use the mean spacing as before
  double mean_spacing=0.5*(vcl_abs(m_LeftImage->GetSignedSpacing()[0])+vcl_abs(m_LeftImage->GetSignedSpacing()[1]));

  // Initialize
  currentPoint1 = m_OutputOriginInLeftImage;
  if(m_UseDEM)
    {
    RSTransform2DType::InputPointType tmpPoint;
    tmpPoint[0] = currentPoint1[0];
    tmpPoint[1] = currentPoint1[1];
    localElevation = demHandler->GetHeightAboveEllipsoid(leftToGroundTransform->TransformPoint(tmpPoint));
    }
  currentPoint1[2] = localElevation;
  currentPoint2 = m_LeftToRightTransform->TransformPoint(currentPoint1);
  currentPoint2[2] = currentPoint1[2];

  // These are the points were the next stereo-rectified image line starts
  nextLineStart1 = currentPoint1;
  nextLineStart2 = currentPoint2;

  // We define the iterators we will use
  typedef itk::ImageRegionIteratorWithIndex<OutputImageType> IteratorType;

  IteratorType it1(leftDFPtr,leftDFPtr->GetLargestPossibleRegion());
  IteratorType it2(rightDFPtr,rightDFPtr->GetLargestPossibleRegion());

  it1.GoToBegin();
  it2.GoToBegin();

  // Reset the mean baseline ratio
  m_MeanBaselineRatio = 0;

  // Set-up progress reporting
  itk::ProgressReporter progress(this, 0, leftDFPtr->GetLargestPossibleRegion().GetNumberOfPixels());


  // We loop on the deformation fields
  while(!it1.IsAtEnd() && !it2.IsAtEnd())
    {
    // 1 - We start by handling the special case where we are at beginning
    // of a new line
    if(it1.GetIndex()[0] == 0 || it2.GetIndex()[0] == 0)
      {
      // In which case we reset the current points
      currentPoint1 = nextLineStart1;
      currentPoint2 = nextLineStart2;
      }

    // 2 - Next, we will fill the deformation fields
    typename OutputImageType::PixelType dFValue1 = it1.Get();
    typename OutputImageType::PixelType dFValue2 = it2.Get();

    // We must cast iterators position to physical space
    PointType currentDFPoint1, currentDFPoint2;
    leftDFPtr->TransformIndexToPhysicalPoint(it1.GetIndex(), currentDFPoint1);
    rightDFPtr->TransformIndexToPhysicalPoint(it2.GetIndex(), currentDFPoint2);

    // Now we can compute the shifts
    dFValue1[0] = currentPoint1[0] - currentDFPoint1[0];
    dFValue1[1] = currentPoint1[1] - currentDFPoint1[1];
    dFValue2[0] = currentPoint2[0] - currentDFPoint2[0];
    dFValue2[1] = currentPoint2[1] - currentDFPoint2[1];

    // And set the values
    it1.Set(dFValue1);
    it2.Set(dFValue2);

    // 3 - Next, we will compute epipolar lines direction in both
    // images
    double a1;

    // First, for image 1

    // This point is the image of the left input image origin at the
    // average elevation
    epiPoint2 = m_LeftToRightTransform->TransformPoint(currentPoint1);

    // The beginning of the epipolar line in the left image is the image
    // of epiPoint2 at a lower elevation (using the offset)
    epiPoint2[2] = localElevation - m_ElevationOffset;
    startLine1 = m_RightToLeftTransform->TransformPoint(epiPoint2);

    // The endning of the epipolar line in the left image is the image
    // of epiPoint2 at a higher elevation (using the offset)
    epiPoint2[2] = localElevation + m_ElevationOffset;
    endLine1 = m_RightToLeftTransform->TransformPoint(epiPoint2);

    // Estimate the local baseline ratio
    double localBaselineRatio = vcl_sqrt((endLine1[0] - startLine1[0])
                                *  (endLine1[0] - startLine1[0])
                                +  (endLine1[1] - startLine1[1])
                                *  (endLine1[1] - startLine1[1]))
                                / (2 * m_ElevationOffset);

    m_MeanBaselineRatio+=localBaselineRatio;

    // Now, we can compute the equation of the epipolar line y = a*x+b
    // (compute angle in physical space)
    double alpha1 = 0;
    if (endLine1[0] == startLine1[0])
      {
      if (endLine1[1] > startLine1[1])
        {
        alpha1 = 0.5*otb::CONST_PI;
        }
      else
        {
        alpha1 = -0.5*otb::CONST_PI;
        }
      }
    else
      {
      a1 = (endLine1[1] - startLine1[1]) / (endLine1[0] - startLine1[0]);
      if (endLine1[0] > startLine1[0])
        {
        alpha1 = vcl_atan(a1);
        }
      else
        {
        alpha1 = otb::CONST_PI + vcl_atan(a1);
        }
      }

    // We do the same for image 2
    currentPoint2[2] = localElevation;
    epiPoint1 = m_RightToLeftTransform->TransformPoint(currentPoint2);

    epiPoint1[2] = localElevation - m_ElevationOffset;
    startLine2 = m_LeftToRightTransform->TransformPoint(epiPoint1);

    epiPoint1[2] = localElevation + m_ElevationOffset;
    endLine2 = m_LeftToRightTransform->TransformPoint(epiPoint1);

    // 4 - Determine position of next points

    // We want to move m_Scale pixels away in the epipolar line of the
    // first image
    // Take into account height direction
    //double alpha1 = otb::CONST_PI - vcl_atan(a1);
    double deltax1 =  m_Scale * m_GridStep * mean_spacing * vcl_cos(alpha1);
    double deltay1 =  m_Scale * m_GridStep * mean_spacing * vcl_sin(alpha1);

    // Now we move currentPoint1
    currentPoint1[0]+=deltax1;
    currentPoint1[1]+=deltay1;
    if(m_UseDEM)
      {
      RSTransform2DType::InputPointType tmpPoint;
      tmpPoint[0] = currentPoint1[0];
      tmpPoint[1] = currentPoint1[1];
      localElevation = demHandler->GetHeightAboveEllipsoid(leftToGroundTransform->TransformPoint(tmpPoint));
      }
    currentPoint1[2] = localElevation;

    // And we compute the equivalent displacement in right image
    currentPoint2 = m_LeftToRightTransform->TransformPoint(currentPoint1);

    // 5 - Finally, we have to handle a special case for beginning of
    // line, since at this position we are able to compute the
    // position of the beginning of next line
    if(it1.GetIndex()[0] == 0 || it2.GetIndex()[0] == 0)
      {
      // We want to move 1 pixel away in the direction orthogonal to
      // epipolar line
      double nextdeltax1 = -m_Scale * mean_spacing * m_GridStep * vcl_sin(alpha1);
      double nextdeltay1 = m_Scale * mean_spacing * m_GridStep * vcl_cos(alpha1);

      // We can then update nextLineStart1
      nextLineStart1[0] = currentPoint1[0] - deltax1 + nextdeltax1;
      nextLineStart1[1] = currentPoint1[1] - deltay1 + nextdeltay1;
      nextLineStart1[2] = localElevation;
      if(m_UseDEM)
        {
        RSTransform2DType::InputPointType tmpPoint;
        tmpPoint[0] = nextLineStart1[0];
        tmpPoint[1] = nextLineStart1[1];
        nextLineStart1[2] = demHandler->GetHeightAboveEllipsoid(leftToGroundTransform->TransformPoint(tmpPoint));
        }


      // By construction, nextLineStart2 is always the image of
      // nextLineStart1 by the left to right transform at the m_AverageElevation
      nextLineStart2 = m_LeftToRightTransform->TransformPoint(nextLineStart1);
      }

    // Last, we move forward
    ++it1;
    ++it2;

    // Update progress
    progress.CompletedPixel();
    }

  // Compute the mean baseline ratio
  m_MeanBaselineRatio /= leftDFPtr->GetBufferedRegion().GetNumberOfPixels();
}

template <class TInputImage, class TOutputImage>
void
StereorectificationDisplacementFieldSource<TInputImage, TOutputImage>
::PrintSelf( std::ostream& os, itk::Indent indent ) const
{
  // Call superclass implementation
  Superclass::PrintSelf(os,indent);
}

} // end namespace otb

#endif