This file is indexed.

/usr/include/OTB-6.4/otbSharkRandomForestsMachineLearningModel.h is in libotb-dev 6.4.0+dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
/*
 * Copyright (C) 2005-2017 Centre National d'Etudes Spatiales (CNES)
 *
 * This file is part of Orfeo Toolbox
 *
 *     https://www.orfeo-toolbox.org/
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef otbSharkRandomForestsMachineLearningModel_h
#define otbSharkRandomForestsMachineLearningModel_h

#include "itkLightObject.h"
#include "otbMachineLearningModel.h"

#if defined(__GNUC__) || defined(__clang__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wshadow"
#pragma GCC diagnostic ignored "-Wunused-parameter"
#pragma GCC diagnostic ignored "-Woverloaded-virtual"
#pragma GCC diagnostic ignored "-Wignored-qualifiers"
#pragma GCC diagnostic ignored "-Wsign-compare"
#pragma GCC diagnostic ignored "-Wcast-align"
#pragma GCC diagnostic ignored "-Wunknown-pragmas"
#endif
#include "otb_shark.h"
#include "shark/Algorithms/Trainers/RFTrainer.h"
#if defined(__GNUC__) || defined(__clang__)
#pragma GCC diagnostic pop
#endif


/** \class SharkRandomForestsMachineLearningModel
 *  \brief Shark version of Random Forests algorithm
 *
 *  This is a specialization of MachineLearningModel class allowing to
 *  use Shark implementation of the Random Forests algorithm.
 *
 *  It is noteworthy that training step is parallel.
 * 
 *  For more information, see
 *  http://image.diku.dk/shark/doxygen_pages/html/classshark_1_1_r_f_trainer.html
 * 
 *  \ingroup OTBSupervised
 */

namespace otb
{
template <class TInputValue, class TTargetValue>
class ITK_EXPORT SharkRandomForestsMachineLearningModel
  : public MachineLearningModel <TInputValue, TTargetValue>
{
public:
  /** Standard class typedefs. */
  typedef SharkRandomForestsMachineLearningModel               Self;
  typedef MachineLearningModel<TInputValue, TTargetValue> Superclass;
  typedef itk::SmartPointer<Self>                         Pointer;
  typedef itk::SmartPointer<const Self>                   ConstPointer;

  typedef typename Superclass::InputValueType             InputValueType;
  typedef typename Superclass::InputSampleType            InputSampleType;
  typedef typename Superclass::InputListSampleType        InputListSampleType;
  typedef typename Superclass::TargetValueType            TargetValueType;
  typedef typename Superclass::TargetSampleType           TargetSampleType;
  typedef typename Superclass::TargetListSampleType       TargetListSampleType;
  typedef typename Superclass::ConfidenceValueType        ConfidenceValueType;
  typedef typename Superclass::ConfidenceSampleType       ConfidenceSampleType;
  typedef typename Superclass::ConfidenceListSampleType   ConfidenceListSampleType;
  
  /** Run-time type information (and related methods). */
  itkNewMacro(Self);
  itkTypeMacro(SharkRandomForestsMachineLearningModel, MachineLearningModel);

  /** Train the machine learning model */
  virtual void Train() ITK_OVERRIDE;

  /** Save the model to file */
  virtual void Save(const std::string & filename, const std::string & name="") ITK_OVERRIDE;

  /** Load the model from file */
  virtual void Load(const std::string & filename, const std::string & name="") ITK_OVERRIDE;

  /**\name Classification model file compatibility tests */
  //@{
  /** Is the input model file readable and compatible with the corresponding classifier ? */
  virtual bool CanReadFile(const std::string &) ITK_OVERRIDE;

  /** Is the input model file writable and compatible with the corresponding classifier ? */
  virtual bool CanWriteFile(const std::string &) ITK_OVERRIDE;
  //@}

  /** From Shark doc: Get the number of trees to grow.*/
  itkGetMacro(NumberOfTrees,unsigned int);
  /** From Shark doc: Set the number of trees to grow.*/
  itkSetMacro(NumberOfTrees,unsigned int);

  /** From Shark doc: Get the number of random attributes to investigate at each node.*/
  itkGetMacro(MTry, unsigned int);
  /** From Shark doc: Set the number of random attributes to investigate at each node.*/
  itkSetMacro(MTry, unsigned int);

  /** From Shark doc: Controls when a node is considered pure. If set
* to 1, a node is pure when it only consists of a single node.
*/
  itkGetMacro(NodeSize, unsigned int);
    /** From Shark doc: Controls when a node is considered pure. If
* set to 1, a node is pure when it only consists of a single node.
 */
  itkSetMacro(NodeSize, unsigned int);

  /** From Shark doc: Get the fraction of the original training
* dataset to use as the out of bag sample. The default value is
* 0.66.*/
  itkGetMacro(OobRatio, float);

  /** From Shark doc: Set the fraction of the original training
* dataset to use as the out of bag sample. The default value is 0.66.
*/
  itkSetMacro(OobRatio, float);

  /** If true, margin confidence value will be computed */
  itkGetMacro(ComputeMargin, bool);
  /** If true, margin confidence value will be computed */
  itkSetMacro(ComputeMargin, bool);

protected:
  /** Constructor */
  SharkRandomForestsMachineLearningModel();

  /** Destructor */
  virtual ~SharkRandomForestsMachineLearningModel();

  /** Predict values using the model */
  virtual TargetSampleType DoPredict(const InputSampleType& input, ConfidenceValueType *quality=ITK_NULLPTR) const ITK_OVERRIDE;

  
  virtual void DoPredictBatch(const InputListSampleType *, const unsigned int & startIndex, const unsigned int & size, TargetListSampleType *, ConfidenceListSampleType * = ITK_NULLPTR) const ITK_OVERRIDE;
  
  /** PrintSelf method */
  void PrintSelf(std::ostream& os, itk::Indent indent) const;

private:
  SharkRandomForestsMachineLearningModel(const Self &); //purposely not implemented
  void operator =(const Self&); //purposely not implemented

  shark::RFClassifier m_RFModel;
  shark::RFTrainer m_RFTrainer;

  unsigned int m_NumberOfTrees;
  unsigned int m_MTry;
  unsigned int m_NodeSize;
  float m_OobRatio;
  bool m_ComputeMargin;

  /** Confidence list sample */
  ConfidenceValueType ComputeConfidence(shark::RealVector & probas, 
                                        bool computeMargin) const;

};
} // end namespace otb

#ifndef OTB_MANUAL_INSTANTIATION
#include "otbSharkRandomForestsMachineLearningModel.txx"
#endif

#endif