This file is indexed.

/usr/include/OTB-6.4/otbSVMMarginSampler.txx is in libotb-dev 6.4.0+dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
/*
 * Copyright (C) 2005-2017 Centre National d'Etudes Spatiales (CNES)
 *
 * This file is part of Orfeo Toolbox
 *
 *     https://www.orfeo-toolbox.org/
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef otbSVMMarginSampler_txx
#define otbSVMMarginSampler_txx

#include "otbSVMMarginSampler.h"
#include "otbMacro.h"

namespace otb
{

template< class TSample, class TModel >
SVMMarginSampler< TSample, TModel >
::SVMMarginSampler()
{
  m_NumberOfCandidates = 10;
}

template< class TSample, class TModel >
void
SVMMarginSampler< TSample, TModel >
::PrintSelf(std::ostream& os, itk::Indent indent) const
{
  Superclass::PrintSelf(os, indent);
}

template< class TSample, class TModel >
void
SVMMarginSampler< TSample, TModel >
::GenerateData()
{
  if(!m_Model)
    {
    itkExceptionMacro("No model, can not do classification.");
    }

  if(m_Model->GetNumberOfSupportVectors() == 0)
    {
    itkExceptionMacro(<<"SVM model does not contain any support vector, can not perform margin sampling.");
    }

  OutputType* output = const_cast<OutputType*>(this->GetOutput());
  output->SetSample(this->GetInput());

  this->DoMarginSampling();
}

template< class TSample, class TModel >
void
SVMMarginSampler< TSample, TModel >
::DoMarginSampling()
{
  IndexAndDistanceVectorType idDistVector;
  OutputType* output = const_cast<OutputType*>(this->GetOutput());

  typename TSample::ConstIterator iter = this->GetInput()->Begin();
  typename TSample::ConstIterator end  = this->GetInput()->End();

  typename OutputType::ConstIterator iterO = output->Begin();
  typename OutputType::ConstIterator endO  = output->End();
  typename TSample::MeasurementVectorType measurements;

  m_Model->SetConfidenceMode(TModel::CM_HYPER);

  int numberOfComponentsPerSample  = iter.GetMeasurementVector().Size();

  int nbClass = static_cast<int>(m_Model->GetNumberOfClasses());
  std::vector<double> hdistances(nbClass * (nbClass - 1) / 2);

  otbMsgDevMacro(  << "Starting iterations " );
  while (iter != end && iterO != endO)
  {
    int i = 0;
    typename SVMModelType::InputSampleType     modelMeasurement(numberOfComponentsPerSample);

    measurements = iter.GetMeasurementVector();
    // otbMsgDevMacro(  << "Loop on components " << svm_type );
    for (i=0; i<numberOfComponentsPerSample; ++i)
    {
    modelMeasurement[i] = measurements[i];
    }

    // Get distances to the hyperplanes
    m_Model->Predict(modelMeasurement, &(hdistances[0]));
    double minDistance = vcl_abs(hdistances[0]);

    // Compute th min distances
    for(unsigned int j = 1; j<hdistances.size(); ++j)
      {
      if(vcl_abs(hdistances[j])<minDistance)
        {
        minDistance = vcl_abs(hdistances[j]);
        }
      }
    // Keep index and min distance
    IndexAndDistanceType value(iter.GetInstanceIdentifier(), minDistance);
    idDistVector.push_back(value);

    ++iter;
    ++iterO;
  }

  // Sort index by increasing distances
  sort(idDistVector.begin(), idDistVector.end(), &Compare);

  // Display the first 10 values
  otbMsgDevMacro( <<" Margin Sampling: " );

  // Clear previous margin samples
  m_MarginSamples.clear();

  for(unsigned int i = 0; i<m_NumberOfCandidates && i<idDistVector.size(); ++i)
    {
    otbMsgDevMacro( "Sample "<<idDistVector[i].first<<" (distance= "<<idDistVector[i].second<<")" )
    m_MarginSamples.push_back(idDistVector[i].first);
    }

}

} // end of namespace otb

#endif