/usr/include/OTB-6.4/otbSEMClassifier.h is in libotb-dev 6.4.0+dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 | /*
* Copyright (C) 2005-2017 Centre National d'Etudes Spatiales (CNES)
* Copyright (C) 2007-2012 Institut Mines Telecom / Telecom Bretagne
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef otbSEMClassifier_h
#define otbSEMClassifier_h
#include "itkListSample.h"
#include "itkSampleClassifierFilter.h"
#include "otbGaussianModelComponent.h"
namespace otb
{
/** \class SEMClassifier
* \brief This class implements the Stochastic Expectation
* Maximization algorithm to perform an estimation of a mixture model.
*
* The first template argument is the type of the target sample
* data. This estimator expects one or more model component objects
* of the classes derived from the ModelComponentBase. The actual
* component (or module) parameters are updated by each component.
* Users can think this class as a strategy or a integration point
* for the SEM procedure.
*
* The number of classes (SetNumberOfClasses), the initial
* proportion (SetInitialProportions), the input sample (SetSample),
* the model components (AddComponent), and the maximum iteration
* (SetMaximumIteration) are required. The SEM procedure terminates
* when the current iteration reaches the maximum iteration or the model
* parameters converge.
*
* The difference from ExpectationMaximizationMixtureModelEstimator is
* that SEMClassifier include the maximum a posteriori decision on each
* sample. The class is to be seen as a classification and not an estimator.
*
* <b>Recent API changes:</b>
* N/A
*
* \sa ModelComponentBase, GaussianModelComponent
*
* \ingroup OTBLearningBase
*/
template<class TInputImage, class TOutputImage>
class ITK_EXPORT SEMClassifier
: public itk::Statistics::SampleClassifierFilter<
typename itk::Statistics::ListSample<typename TInputImage::PixelType> >
{
public:
/** Standard class typedef*/
typedef SEMClassifier Self;
typedef itk::Statistics::SampleClassifierFilter<
typename itk::Statistics::ListSample<typename TInputImage::PixelType> >
Superclass;
typedef itk::SmartPointer<Self> Pointer;
typedef itk::SmartPointer<const Self> ConstPointer;
/** Standard macros */
itkTypeMacro(SEMClassifier, itk::Object);
itkNewMacro(Self);
/** TSample template argument related typedefs */
typedef typename itk::Statistics::ListSample<typename TInputImage::PixelType> SampleType;
typedef typename itk::Statistics::Subsample<SampleType> ClassSampleType;
typedef typename SampleType::MeasurementType MeasurementType;
typedef typename SampleType::MeasurementVectorType MeasurementVectorType;
/** Type of the segmentation vector */
typedef unsigned int ClassLabelType;
typedef std::vector<ClassLabelType> ClassLabelVectorType;
/** Output type for GetClassSample method */
typedef itk::Statistics::MembershipSample<SampleType> OutputType;
/** Type of the mixture model component base class.
* Due to the stochastic purpose, the initial list of sample (from TInputImage)
* is duplicated as many times as the number of classes (into SampleLists). */
typedef otb::Statistics::ModelComponentBase<ClassSampleType> ComponentType;
typedef typename ComponentType::Pointer ComponentPointerType;
/** Type of the component pointer storage, one component per class */
typedef std::vector<ComponentPointerType> ComponentVectorType;
/** type of the parameters needed for the component vectors */
typedef itk::Array<double> ParameterType;
/** Type of the parameter pointer storage, one parameter set per class */
typedef std::vector<ParameterType> ParameterVectorType;
/** Type of the vector of the probability values for each sample */
typedef std::vector<double> ProportionVectorType;
typedef std::vector<double> ProbaVectorType;
/** Type of the probability values of each sample per class */
typedef std::vector<ProbaVectorType> ProbaByClassVectorType;
/** Sets the target data that will be classified by this */
void SetSample(const TInputImage * sample);
/** Returns the target data */
const TInputImage* GetSample() const;
SampleType * GetSampleList() const;
/** Set/Gets the initial proportion values. The size of proportion
* vector should be same as the number of component (or classes).
* Choose between SetInitialProportions, SetClassLabels or
* SetNumberOfComponents */
void SetInitialProportions(ProportionVectorType& propotion);
ProportionVectorType* GetInitialProportions();
/** Gets the result proportion values */
ProportionVectorType* GetProportions();
/** Set/Gets the initial segmentation. the size of the vector should be
* the same as the number of samples (length of MeasurementVector) */
void SetClassLabels(OutputType * labels);
void SetClassLabels(TOutputImage * imgLabels);
ClassLabelVectorType& GetClassLabels();
/** Set/Gets the maximum number of iterations. When the optimization
* process reaches the maximum number of interations, even if the
* class parameters aren't converged, the optimization process
* stops. */
itkSetMacro(MaximumIteration, int);
itkGetMacro(MaximumIteration, int);
/** Set/Gets the neighborhood to take into consideration
* in the contextual decision rule. Should be odd (def. 3). */
void SetNeighborhood(int neighborhood);
int GetNeighborhood();
/** Gets the current iteration. */
int GetCurrentIteration();
/** Adds a new component (or class). Has to be called after SetNumberOfClasses */
int AddComponent(int id, ComponentType* component);
/** Runs the optimization process. */
void Update() ITK_OVERRIDE;
/** Termination status after running optimization */
typedef enum { CONVERGED = 0, NOT_CONVERGED = 1 } TerminationCodeType;
/** Set/Get the termination threshold (ratio of the number of sample that
* change affected class during interation over the total number of
* samples (def is 1E-5) */
itkSetMacro(TerminationThreshold, double);
itkGetMacro(TerminationThreshold, double);
/** Gets the termination status */
itkGetMacro(TerminationCode, TerminationCodeType);
/* Return the classification result (as a standard classification result) */
OutputType * GetOutput();
/* Return the classification result (as an image) */
TOutputImage * GetOutputImage();
void Modified() const ITK_OVERRIDE;
protected:
SEMClassifier();
~SEMClassifier() ITK_OVERRIDE {}
void PrintSelf(std::ostream& os, itk::Indent indent) const ITK_OVERRIDE;
/** Initialize the first segmentation, either randomly or by using
* a ClassLabelVectorType given in SetClassLabels. */
void InitParameters();
/** Stochastic part of the SEM */
void PerformStochasticProcess();
/** Estimation part of the SEM */
void PerformExpectationProcess();
/** Maximization part of the SEM.
* This method should be upgraded this a contextual point of view...
* It required to a Neighborhood knowledge into the TSample type... */
void PerformMaximizationProcess();
/** Make Decision through a Maximum a posteriori */
void GetMaximumAposterioriLabels();
private:
/** Target data sample pointer*/
const TInputImage* m_Sample;
int m_NbSamples;
typename SampleType::Pointer m_SampleList;
int m_MaximumIteration;
int m_CurrentIteration;
int m_NbChange;
double m_TerminationThreshold;
int m_Neighborhood;
TerminationCodeType m_TerminationCode;
mutable ComponentVectorType m_ComponentVector;
ProportionVectorType m_InitialProportions;
ProportionVectorType m_Proportions;
ProbaByClassVectorType m_Proba;
ClassLabelVectorType m_ClassLabels;
int m_ExternalLabels;
mutable int m_ComponentDeclared;
typename TOutputImage::Pointer m_OutputImage;
typename OutputType::Pointer m_Output;
}; // end of class
} // end of namespace
#ifndef OTB_MANUAL_INSTANTIATION
#include "otbSEMClassifier.txx"
#endif
#endif
|